

Laura Žigutytė Kather Lab, EKFZ, TU Dresden i laura.zigutyte@tu-dresden.de

Matthias Täschner ScaDS, Uni Leipzig matthias.taeschner@uni-leipzig.de

Explorative data science Unsupervised machine learning

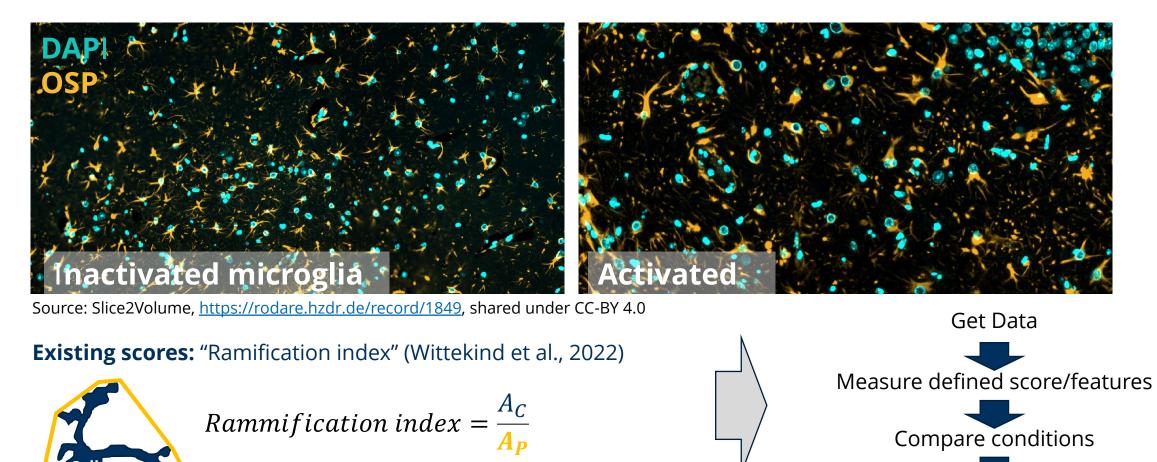
With materials from Robert Haase, Till Korten, Johannes Müller, Ryan Savill ScaDS BIDS Training School on Bioimage and Data Science // May 15th

Ideal situation: We know about a measurable feature

Example: Inactivated vs. activated microglia in mouse brain

Solidity

Perimetei



Circularity

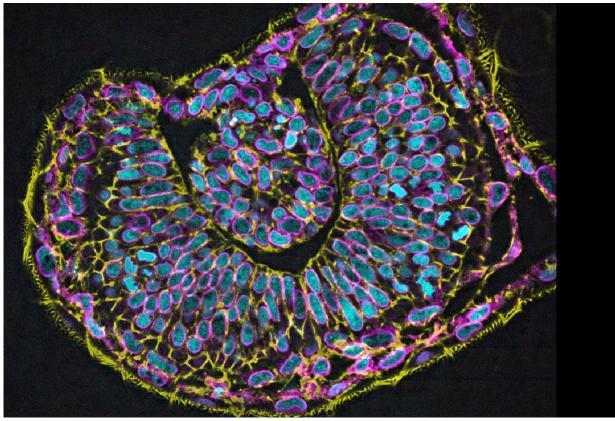
Ideal workflow

Slide 2

Be done 🙂

More typical situation: We do not know about a feature

- We expect or know of a biological effect (e.g., through external cues, cell growth stages, etc.)
- We do not know how this effect can be measured or how it manifests itself

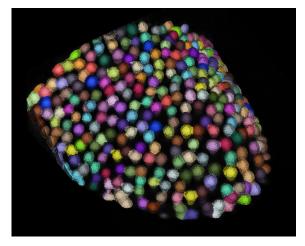


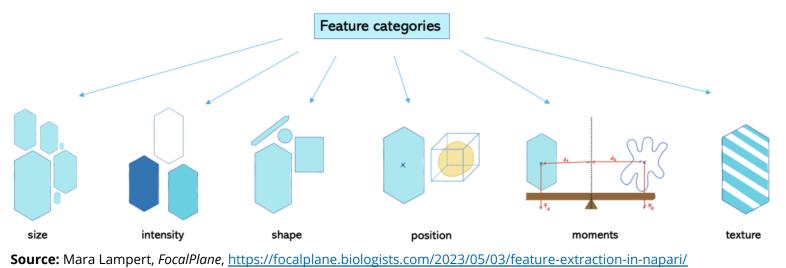
Example: Developing zebrafish eye Hypothesis: Cells develop differently depending on where they are **Get Data** Measure ... what exactly? Compare ... what exactly? **Be stuck** \otimes

Source: Mauricio Rocha Martins, Norden lab, MPI CBG

We can measure tons of features...

... but still have no idea about what's happening!





Which of these features reflect interesting biology?

	label	area	bbox_area	convex_area	quivalent_diamete	max_intensity	mean_intensity	min_intensity	solidity	extent	eret_diameter_ma	local_centroid-0
1		3379	13949	5120	18.61786412639	613.0	345.6717963894	259.0	0.6599609375	0	37.3496987939662	15.77952056821
2	2	2319	7448	3491	16.42230229224	421.0	297.8434670116	240.0	0	0	38.65229618017	4
3	3	2304	14415	4281	16.38681751812	456.0	300.8298611111	245.0	0	0	34.19064199455	17.73828125
4	4	3278	13804	5139	18.43048549951	467.0	316.1446003660	249.0	0	0	34.84250278036	15.52287980475
5	5	1501	3315	1681	14.20563625190	458.0	302.147235176549	236.0	0	0	17.97220075561	б
6	6	2341	6061	2714	16.47407088948	594.0	355.4446817599	261.0	0	0	30.67572330035	16.54250320375
7	7	1725	3584	1940	14.87979081163	568.0	343.78666666666	257.0	0	0	17.72004514666	7.80463768115942

Identify the feature with the strongest effect

We could plot all features against our data and check which feature shows the strongest effect

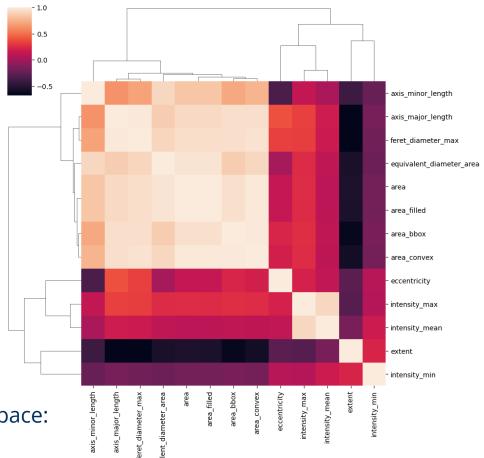
But this would lead to following challenges:

- Features are not independent!
 - Area and diameter
 - Width and height
- A lot of redundant information
- Strongest effect might be a combination of features
- Risk of misinterpretation

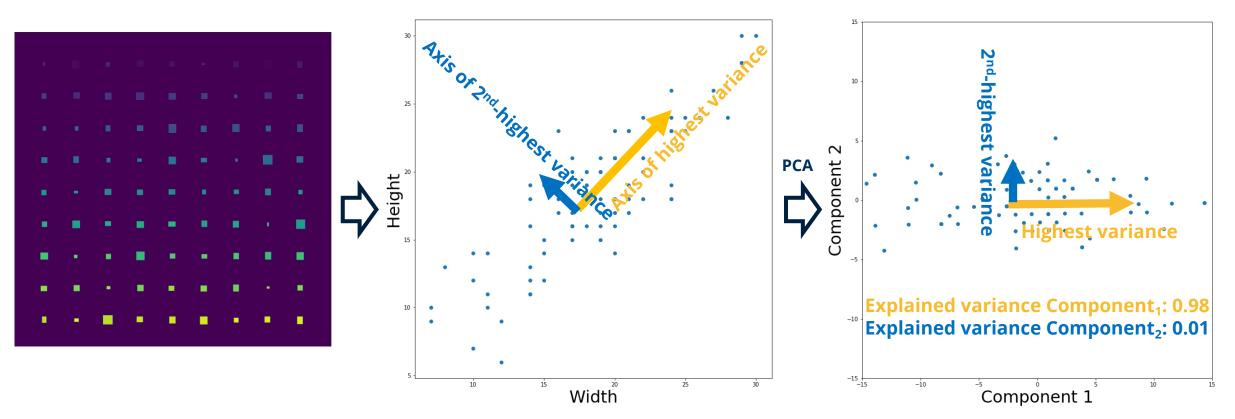
- Need fewer and independent features
- Need to transform parameter space into lower dimensional space:
- Matrix factorization methods
 - Principal component analysis (PCA)

> Neighbor Graphs

- t-Distributed Stochastic Neighbour Embedding (t-SNE)
- Uniform Manifold Approximation and Projection (UMAP)



Decomposes data into linear combinations of features that explain the highest variance **Example:** Squares of different size



→ PCA transforms width/height measurements into a coordinate system that explains existing variance better

Decomposes data into linear combinations of features that explain the highest variance **Example:** Squares of different size

				•			•		
•		•	-	•			•		
•	•	•	•	•	•	•		•	
	•	•	•	•	•	•	•	•	
-	•	•	•	•	•	•		•	
•	-	-	•	•	•	•	•	•	

Step 1: Standardization

<u>Case 1</u> Heights: 0 ... 30 Widths: 0 ... 30

Case 2
Area: 0 ... 100
Circularity: 0 ... 1
$$z = \frac{value - mean}{standard deviation}$$

k

Step 2: Covariance matrix computation to identify correlations

[Cov(height, height)	Cov(height,width)
<pre>Cov(width, height)</pre>	Cov(width,width)
Variances	

+ $Cov \rightarrow$ variables correlated - $Cov \rightarrow$ inversely correlated = $0 \rightarrow$ variables are independent

$$Cov(height, width) = \langle h \cdot w \rangle - \langle h \rangle \cdot \langle w \rangle = \left(\frac{1}{N} \sum_{i=0}^{N-1} h_i w_i\right) - \left(\frac{1}{N} \sum_{i=0}^{N-1} h_i\right) \left(\frac{1}{N} \sum_{i=0}^{N-1} w_i\right)$$

N – number of data points

Decomposes data into linear combinations of features that explain the highest variance **Example:** Squares of different size

•			•				
 -	•	•	•			•	
	•	•	•	•	•		•
•	•	•	•	-	•	•	
 •	•	•	•	•	•		•
- 1		•		•	•	•	•

Step 3: Calculation of Eigenvectors and Eigenvalues

$$\det(C - \lambda I) = 0 \qquad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$det(C - \lambda I) = det \begin{bmatrix} Cov(height, height) - \lambda & Cov(height, width) \\ Cov(width, height) & Cov(width, width) - \lambda \end{bmatrix} = 0$$

 \rightarrow Solve equation for eigenvalues (λ)

 \rightarrow Find eigenvectors (v) by substituting each eigenvalue in $(C - \lambda I)\mathbf{v} = 0$

$$\boldsymbol{v}_{1} = \begin{bmatrix} \boldsymbol{v}_{1,height} \\ \boldsymbol{v}_{1,width} \end{bmatrix} \quad \boldsymbol{v}_{2} = \begin{bmatrix} \boldsymbol{v}_{2,height} \\ \boldsymbol{v}_{2,width} \end{bmatrix}$$

C – covariance matrix

λ - eigenvalues *I* - identity matrix
ν - eigenvectors

Decomposes data into linear combinations of features that explain the highest variance **Example:** Squares of different size

Step 4: Transformation to a new coordinate system

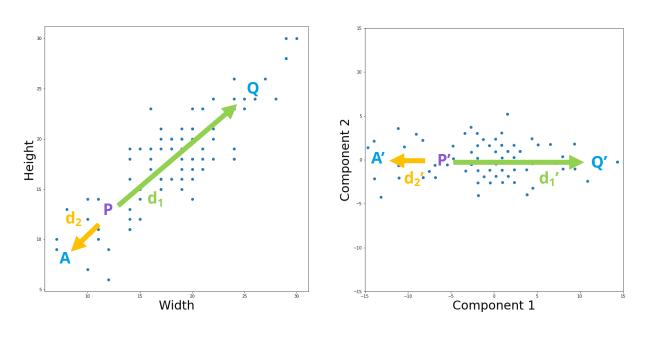
Transformation matrix $T = \begin{bmatrix} v_{1,height} & v_{2,height} \\ v_{1,width} & v_{2,width} \end{bmatrix}$ $T \cdot \begin{pmatrix} width \\ height \end{pmatrix} = \begin{pmatrix} component \ 1 \\ component \ 2 \end{pmatrix}$ This is a linear operation!

Metrics remain meaningful

This works for any number of features!

$$T \cdot \begin{pmatrix} feature \ 1 \\ \dots \\ feature \ N \end{pmatrix} = \begin{pmatrix} component \ 1 \\ component \ 2 \end{pmatrix}$$

Great visualization tool for learning PCA: <u>https://setosa.io/ev/principal-component-analysis/</u> by Victor Powell



 $\mathbf{d_1} \geq \mathbf{d_2} \rightarrow \mathbf{d_1'} \geq \mathbf{d_2'}$

Relative distances are preserved!

Slide 9

PCA in Python: sklearn.decomposition.PCA

Import package

from sklearn.decomposition import PCA

Apply PCA

pca = PCA(n_components=2)
pca.fit(standardized_data)

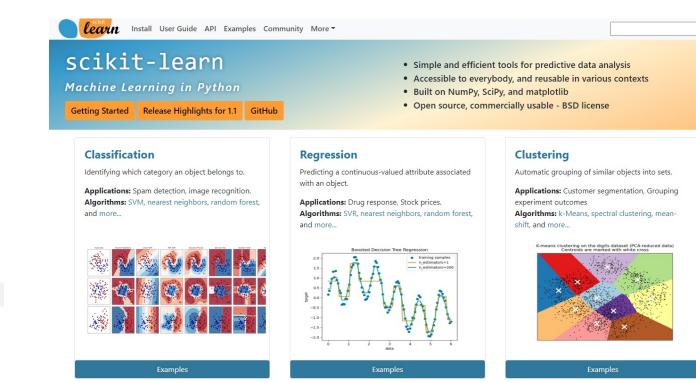
Transform data into new coordinate system
 transformed_data = pca.transform(data)

Important!

Always check the explained variance along the PCA component axes!

pca.explained_variance_ratio_

array([0.98773142, 0.01226858])



Dimensionality reduction Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tun-

Preprocessing

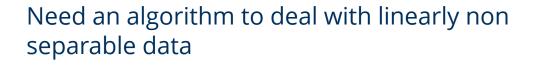
Feature extraction and normalization.

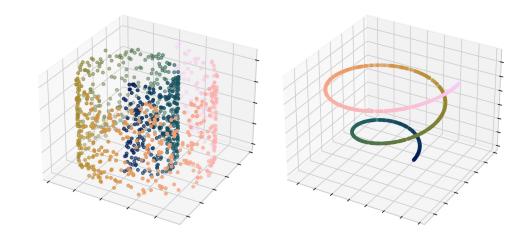
Applications: Transforming input data such as text for use with machine learning algorithms.

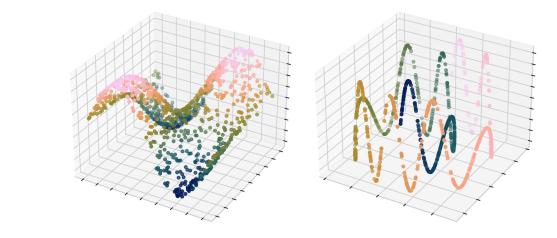
Go

Disadvantages of PCA

- Sensitive to the scaling of the variables and outliers
- Linear algorithm \rightarrow cannot represent complex relationships between features
- Loss of information







Recap: Euclidean space

Characteristics:

• Distance between **A** and **B** is symmetric:

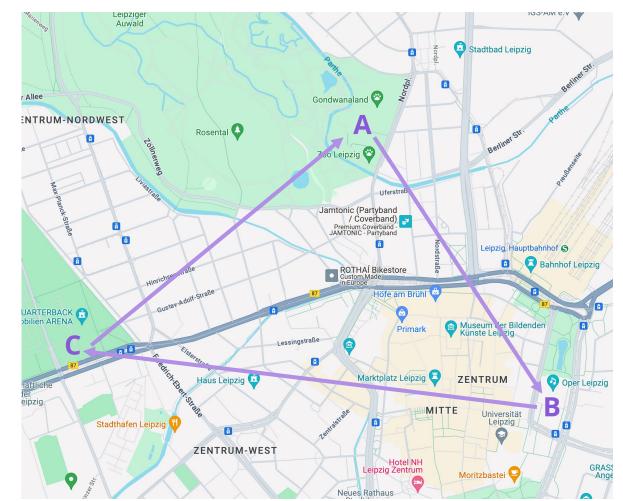
 $\succ d(A,B) = d(B,A)$

- Distance between **A** and **B** can be measured as the length ("norm") of the vector \overrightarrow{AB}
- Distances satisfy the triangle inequality:

 $d(\mathbf{B},\mathbf{C}) \le d(\mathbf{C},A) + d(\mathbf{A},\mathbf{B})$

In other words: there is no shorter path between two points other than a straight line

Example: (local) 2D space



Source: Maps.google.de License: https://about.google/brand-resource-center/products-and-services/geo-guidelines/#google-maps

More complex concept: Manifolds

From Wikipedia: "In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point."

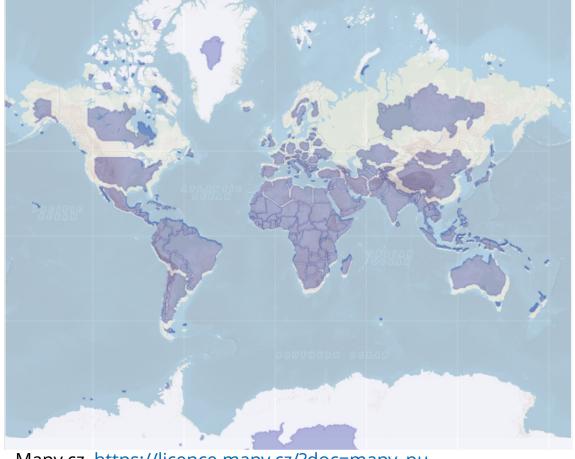
...This map is non-Euclidean!

- → The two vectors \overrightarrow{PQ} and \overrightarrow{AB} have the same length, but the real distances (the norm) of both are completely different!
- → Cropping a small piece from the map gives us a local Euclidean space, where the previous assumptions hold.

Mapy.cz, <u>https://licence.mapy.cz/?doc=mapy_pu</u>

More complex concept: Manifolds

From Wikipedia: "In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point."



...This map is non-Euclidean!

- \rightarrow The two vectors \overrightarrow{PQ} and \overrightarrow{AB} have the same length, but the real distances (the norm) of both are completely different!
- \rightarrow Cropping a small piece from the map gives us a local *Euclidean space, where the previous assumptions hold.*

Approximately true country sizes Source: Jakub Nowosad (CC BY-SA 4.0)

Reduce dimensionality preserving local structure (neighbours)

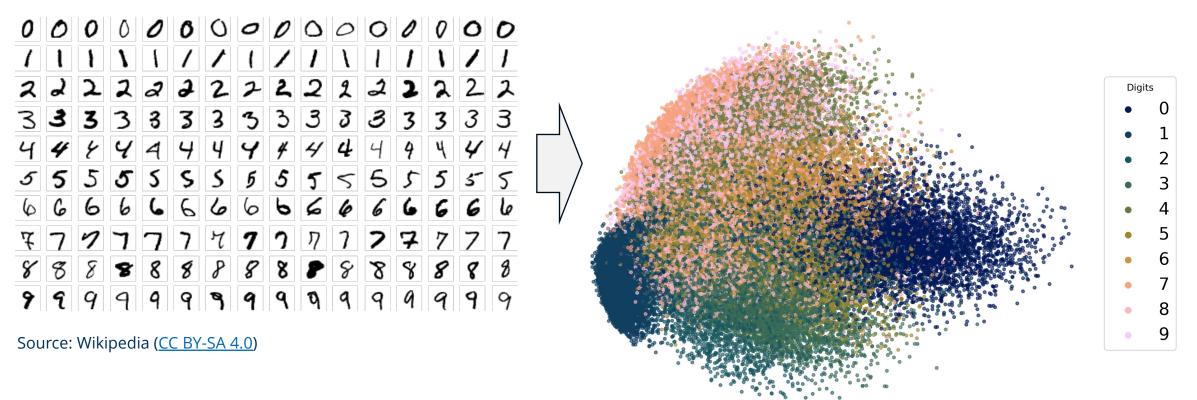
- Find a manifold that represents the data in fewer dimensions \rightarrow ability to visualize the data
- Preserve local neighbours at the expense of distance distortions

× «	Q							Propert	ies of Result of	voronoi otsu lal	oelina (clesperan	
	Copy to dipboard											
	label	area	bbox_area	convex_area	quivalent_diamete max_inter	nsity mean_intensity	min_intensity	solidity	extent	eret_diameter_max	local_centroid-0	
		3379	13949	5120	18.61786412639 613.0	345.6717963894	259.0	0.6599609375	0	37.3496987939662	15.77952056821	
		2319	7448	3491	16.42230229224 421.0	297.8434670116	240.0	0	0	38.65229618017	4	
		2304	14415	4281	16.38681751812 456.0	300.8298611111	245.0			34.19064199455	17.73828125	
		3278	13804	5139	18.43048549951 467.0	316.1446003660	249.0			34.84250278036	15.52287980475	
		1501	3315	1681	14.20563625190 458.0	302.147235176549	236.0	0	0	17.97220075561	6	
		2341	6061	2714	16.47407088948 594.0	355.4446817599	261.0	0	0	30.67572330035	16.54250320375	
			3584	1940	14.87979081163 568.0	343.78666666666	257.0	0	0	17.72004514666	7.80463768115942	
		1502	3840		14.20879025650 431.0	290.0659121171	235.0	0	0	18.57417562100	8	
		1602	4080	1894	14.51737058294 475.0	297.8008739076	241.0			18.70828693386	8	
		1395	3600	1624	13.86304166283 424.0	304.8494623655	247.0		0.3875	17.60681686165		
		609	1100	697	10.51654029260 323.0	274.2528735632	241.0	0	0	13.45362404707		
		1686	3757	1894	14.76679738567 460.0	303.8303677342	240.0	0	0	17.97220075561	9	
			5184	2531	16.03062694504 576.0	339.990264255911	270.0	0	0	19.54482028569	8	
		863	2340	1032	11.81237949737 327.0	272.4449594438		0	0	16.0312195418814	6	

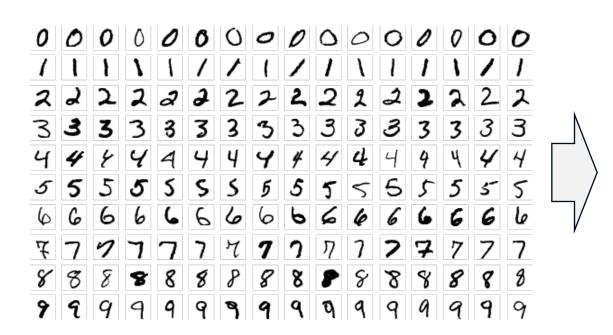
Many dimensions

Nearest neighbours preserved Global distances distorted

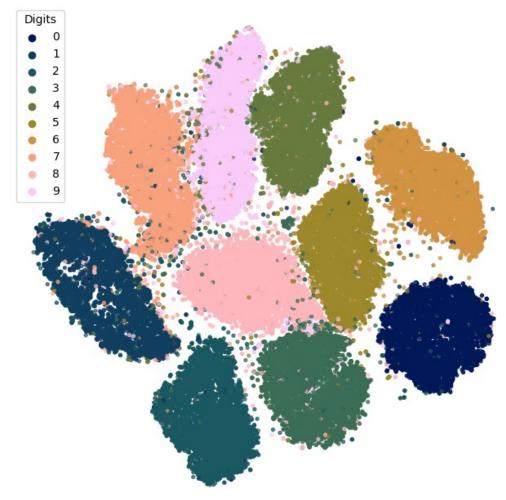
Reduced space to 2 dimensions



PCA visualization of MNIST dataset



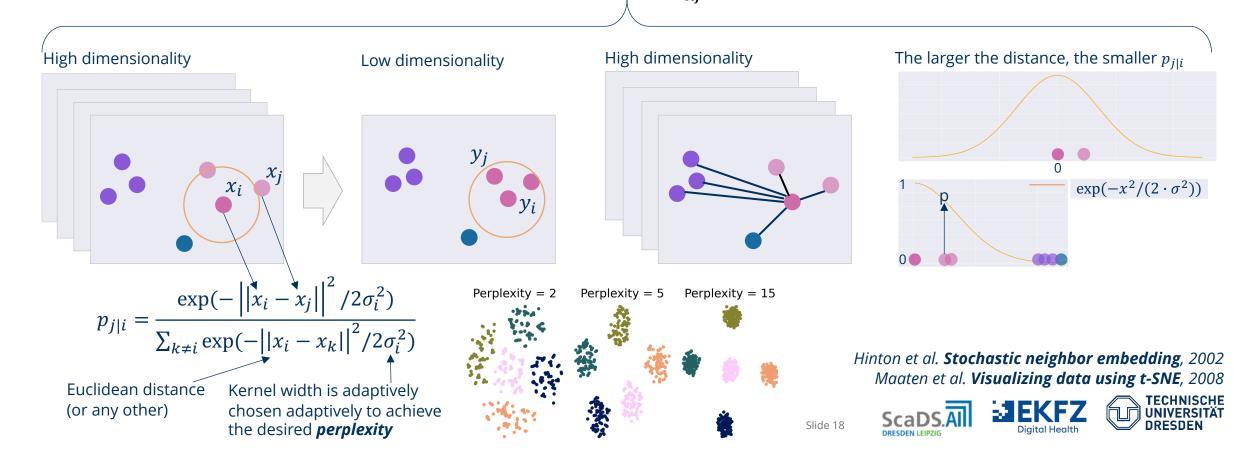
Source: Wikipedia (CC BY-SA 4.0)



t-SNE visualization of MNIST dataset

- Loss function **Kullback-Leibner divergence** (*L*) between pairwise similarities (affinities) in the highdimensional and in the low-dimensional spaces. Similarities are defined such that they sum to 1.
- High price for putting close neighbors far away.

p – High dimensional similarities



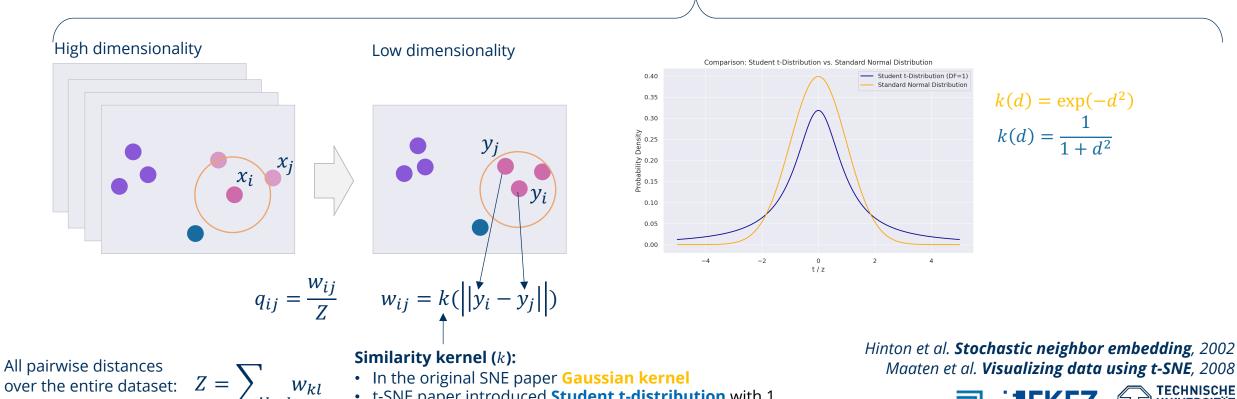
 $\mathcal{L} = \sum_{i,j} p_{ij} \log \frac{p_{ij}}{q_{ii}}$

- Loss function **Kullback-Leibner divergence** (*L*) between pairwise similarities (affinities) in the high-٠ dimensional and in the low-dimensional spaces. Similarities are defined such that they sum to 1.
- High price for putting close neighbors far away. •

W_{kl}

p – High dimensional similarities

q – Low dimensional similarities



 $\mathcal{L} = \sum_{i,j} p_{ij} \log \frac{p_{ij}}{q_{ii}}$

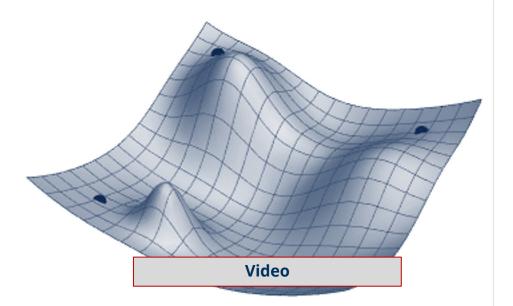
- In the original SNE paper Gaussian kernel
- t-SNE paper introduced Student t-distribution with 1 degree of freedom (heavy tails) to avoid crowding issue

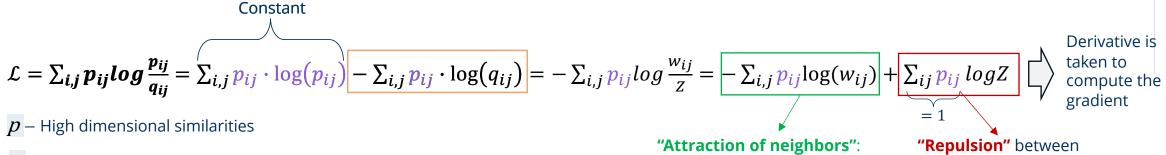
Slide 19

TECHNISCHE UNIVERSITÄT

Gradient Descent for Optimizing the Loss

- Starting from a **random** configuration of the same number of points in low dimensional space
- Close neighbours **attract** each other while all points **repulse** each other → High price for putting close neighbors far away
- Attraction-repulsion forces are computed for each data point, and a small step is made in the direction of this gradient (that is, you move all the points), and then the gradient is recomputed





q – Low dimensional similarities

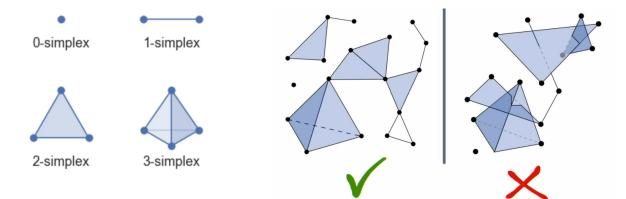
"Attraction of neighbors": the distance should be as small as possible in the low-dim space **"Repulsion"** between all the pairs for balance

Uniform Manifold Approximation and Projection (UMAP)

Advantages over t-SNE:

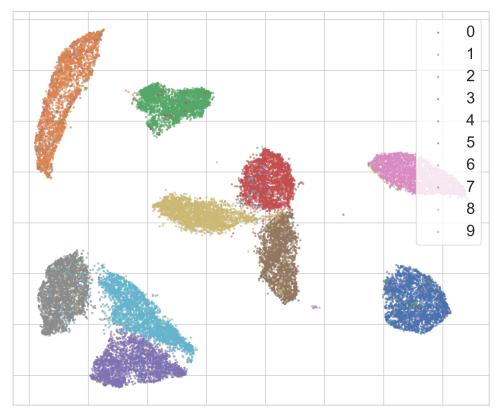
- Increased speed (projection of 70 000 point MNIST dataset < 3 • minutes in comparison to 45 min for scikit-learn's t-SNE)
- Scales well in terms of both dataset and dimensionality ٠
- Better preservation of the data's global structures ٠
- Builds mathematical theory to justify the graph based approach ٠

UMAP constructs a high dimensional graph representation of the data then optimizes a low-dimensional graph to be as structurally similar as possible.



https://umap-learn.readthedocs.io/en/latest/how umap works.html Interesting UMAPs https://johnhw.github.io/umap primes/index.md.html

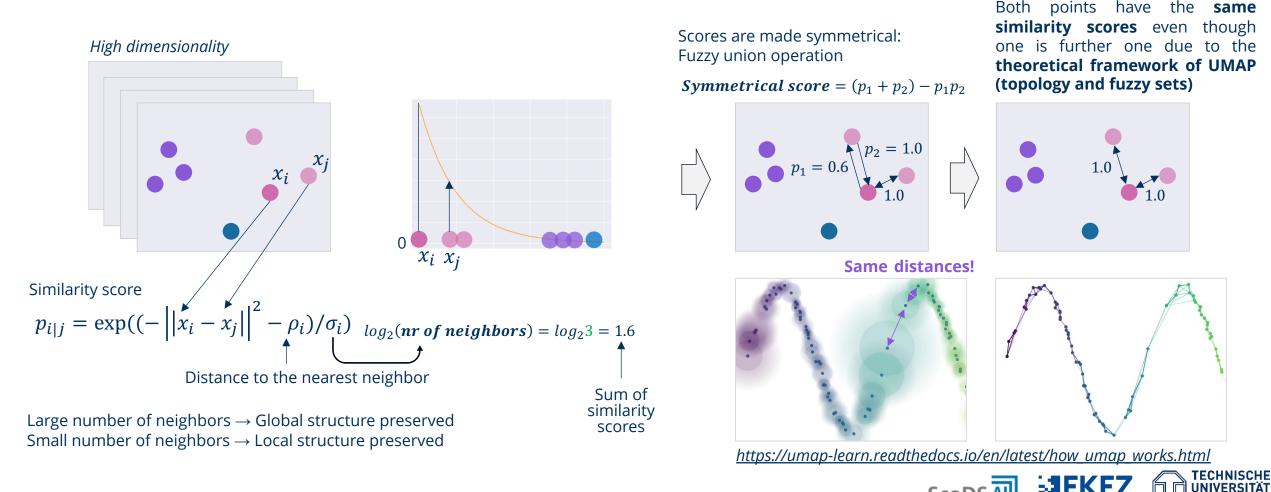
UMAP projection of MNIST dataset



Slide 2'

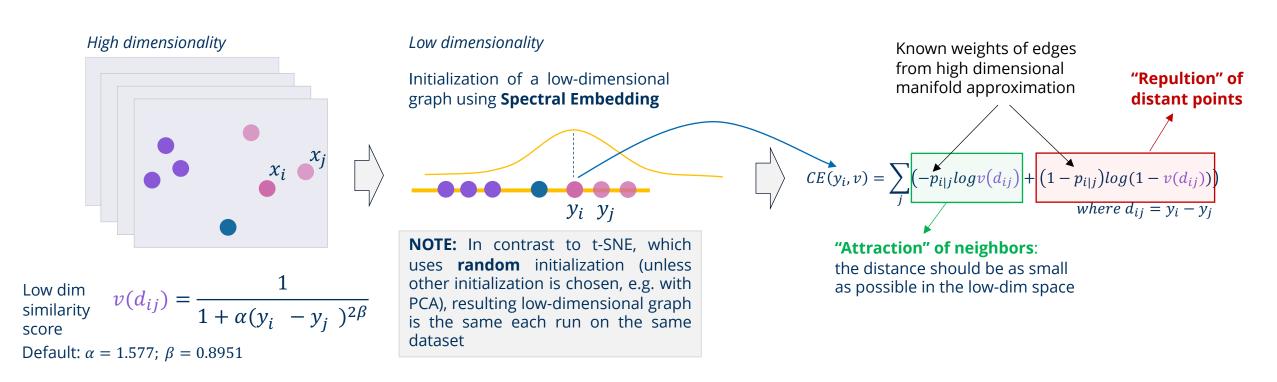
Uniform Manifold Approximation and Projection (UMAP)

- The data suggests an underlying structure ("topology") but we do not have a model for it.
- UMAP constructs a high dimensional graph representation of the data then optimizes a low-dimensional graph to be as structurally similar as possible.



Uniform Manifold Approximation and Projection (UMAP)

Goal: to optimize the low dimensional representation to have as close a fuzzy topological representation as possible as measured by **binary cross entropy** via the **stochastic gradient descent**

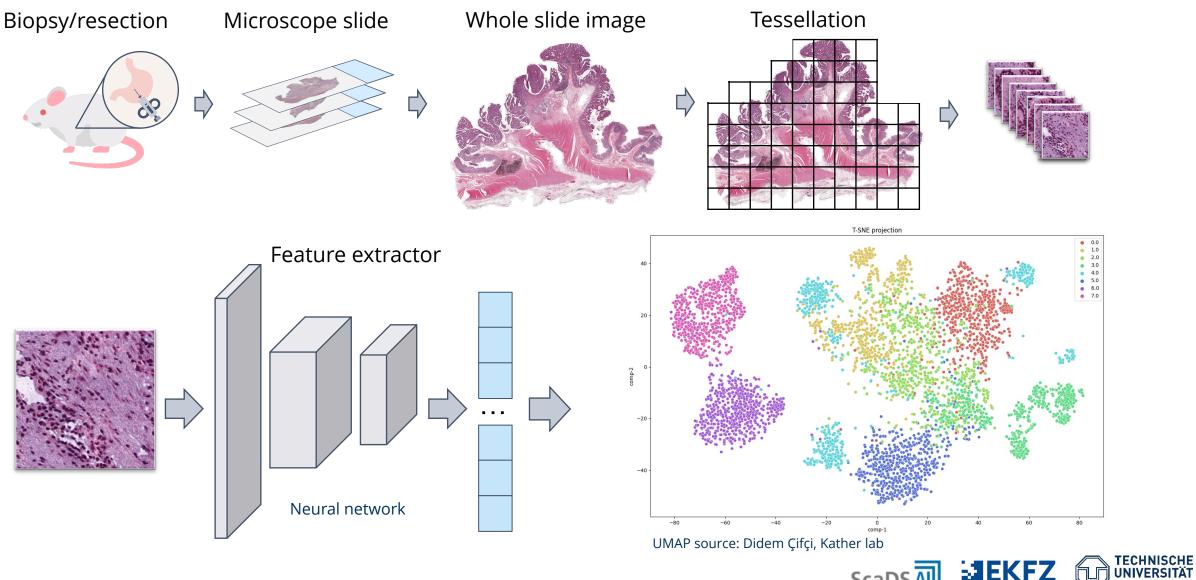


NOTE: if $\alpha = 1$ and $\beta = 1$ then low-dim scores are equal to the ones that **t-SNE** uses \rightarrow UMAP gives more control how tightly packed low-dim space ends up

Things to Consider

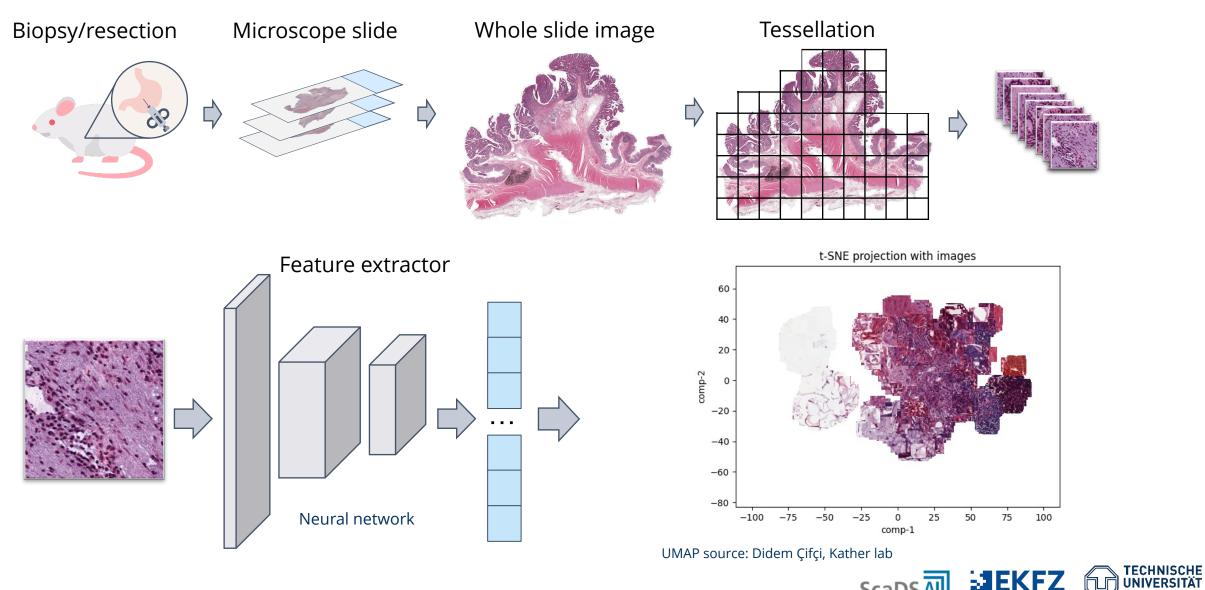
- Many parameters invite to "adjust" the data analysis, and final results depend a lot on hyperparameters
- Danger to over-interpret the visual "distance": distances between clusters might not mean anything
- How much data structure is preserved is still a matter of debate
- Random noise might not always look random
- Cluster size might not mean anything

Dimensionality Reduction for Whole Slide Images



Slide 25

Dimensionality Reduction for Whole Slide Images



Whole Slide Image Source: The Cancer Genome Atlas, National Cancer Institute

Slide 26

RESDEN

How to choose the best algorithm for your data?

- Depends on the dataset
- Subjective assessment of obtained results

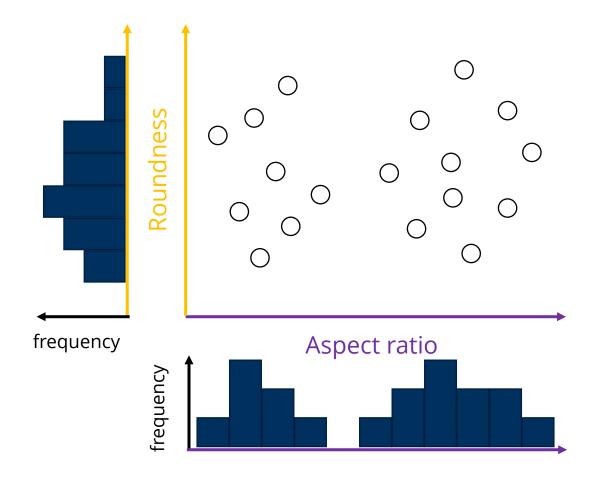
How to compare different low dimensional embeddings?

- Lack of robust statistical approaches available to compare different results
- There is some literature trying to fill this gap (Roca et al., 2023)

Slide 27

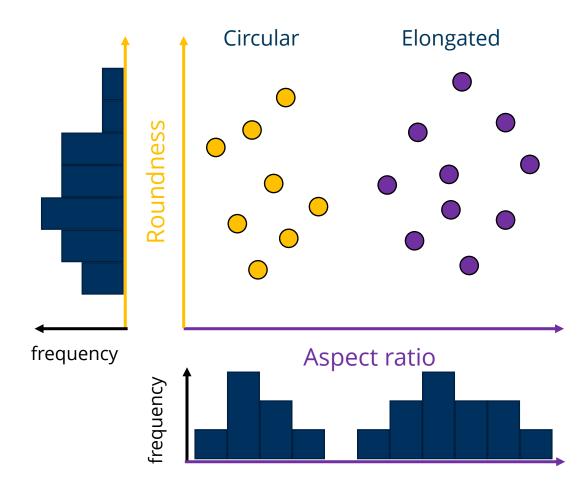
Unsupervised Machine Learning

Unsupervised machine learning algorithms try to find any similarities, differences, patterns, and structure in data by itself, without the provided ground truth (labels).



Unsupervised Machine Learning

Unsupervised machine learning algorithms try to find any similarities, differences, patterns, and structure in data by itself, without the provided ground truth (labels).



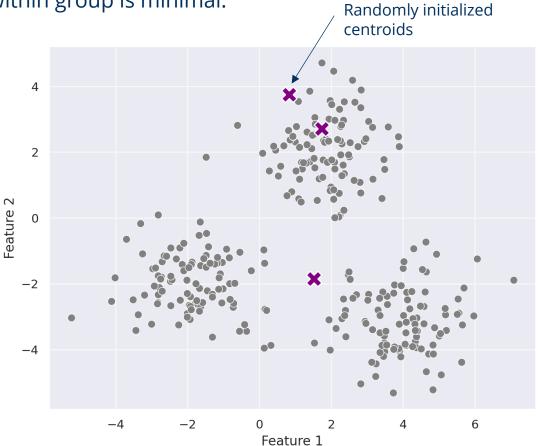
Goal: group data points into *k* groups so that variance within group is minimal.

STEP 1: *k* initial centroids are randomly initialized. These centroids are the "centers" of the initial clusters.

STEP 2: each data point is assigned to the nearest centroid. The "nearest" is typically determined by the **Euclidean distance** between the data point and the centroid. This forms *k* clusters.

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

n – dimensionality, in this example = 2



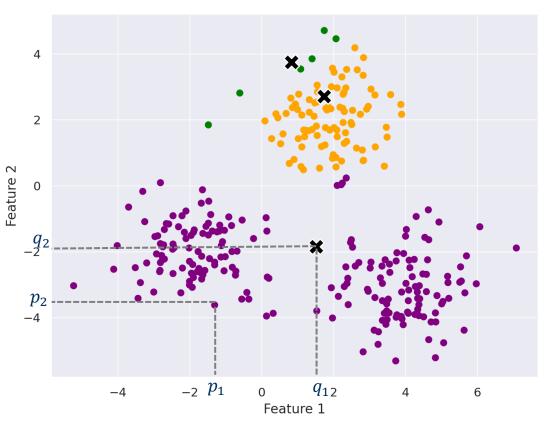
Goal: group data points into *k* groups so that variance within group is minimal.

STEP 1: *k* initial centroids are randomly initialized. These centroids are the "centers" of the initial clusters.

STEP 2: each data point is assigned to the nearest centroid. The "nearest" is typically determined by the **Euclidean distance** between the data point and the centroid. This forms *k* clusters.

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

n – dimensionality, in this example = 2



Goal: group data points into *k* groups so that variance within group is minimal.

STEP 3: Recalculation of centroids of the clusters formed by taking the mean of all points assigned to each cluster.

New centroid_i =
$$\frac{1}{|C_i|} \sum_{x \in C_i} x$$

 C_i - the number of data points in cluster *i*

Repeat steps 2-3: the assignment and update steps are repeated iteratively until one of the following conditions is met:

- The centroids do not change (or their changes are below a certain tolerance).
- The assignments do not change (no data point moves to a different cluster).
- A predetermined number of iterations is reached.

Goal: group data points into *k* groups so that variance within group is minimal.

STEP 3: Recalculation of centroids of the clusters formed by taking the mean of all points assigned to each cluster.

New centroid_i = $\frac{1}{|C_i|} \sum_{x \in C_i} x$

 C_i - the number of data points in cluster *i*

Repeat steps 2-3: the assignment and update steps are repeated iteratively until one of the following conditions is met:

- The centroids do not change (or their changes are below a certain tolerance).
- The assignments do not change (no data point moves to a different cluster).
- A predetermined number of iterations is reached.



Goal: group data points into *k* groups so that variance within group is minimal.

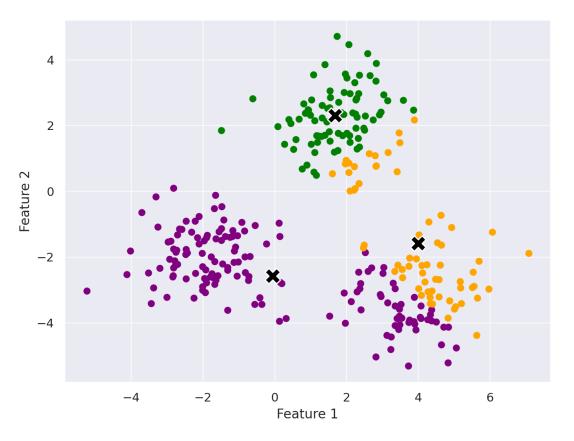
STEP 3: Recalculation of centroids of the clusters formed by taking the mean of all points assigned to each cluster.

New centroid_i = $\frac{1}{|C_i|} \sum_{x \in C_i} x$

 C_i - the number of data points in cluster *i*

Repeat steps 2-3: the assignment and update steps are repeated iteratively until one of the following conditions is met:

- The centroids do not change (or their changes are below a certain tolerance).
- The assignments do not change (no data point moves to a different cluster).
- A predetermined number of iterations is reached.



Goal: group data points into *k* groups so that variance within group is minimal.

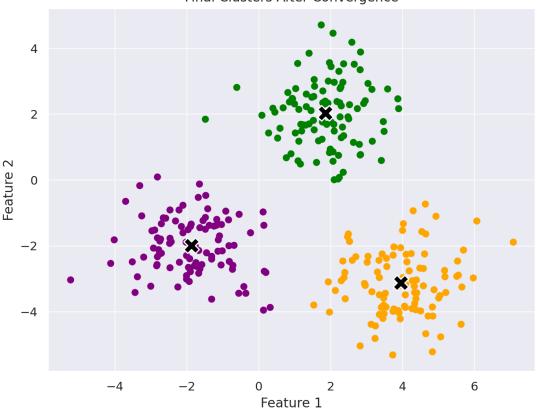
STEP 3: Recalculation of centroids of the clusters formed by taking the mean of all points assigned to each cluster.

New centroid_i = $\frac{1}{|C_i|} \sum_{x \in C_i} x$

 C_i - the number of data points in cluster *i*

Repeat steps 2-3: the assignment and update steps are repeated iteratively until one of the following conditions is met:

- The centroids do not change (or their changes are below a certain tolerance).
- The assignments do not change (no data point moves to a different cluster).
- A predetermined number of iterations is reached.



Final Clusters After Convergence

K-Means Clustering In Python

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=2, random_state=42)
kmeans.fit(simple_data)

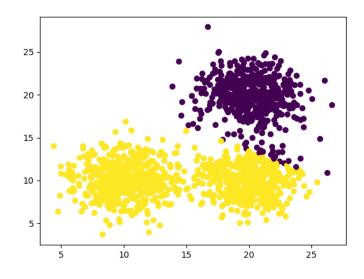
The cluster centers (means)
centroids = kmeans.cluster_centers_

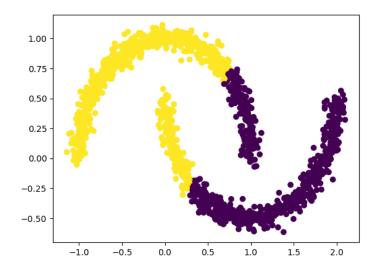
Using the 'predict' method to assign new points to the nearest cluster centroid new_points = np.array([[0, 0], [12, 3]]) predicted_labels = kmeans.predict(new_points)

K-Means Clustering In Python

Advantages & Disadvantages:

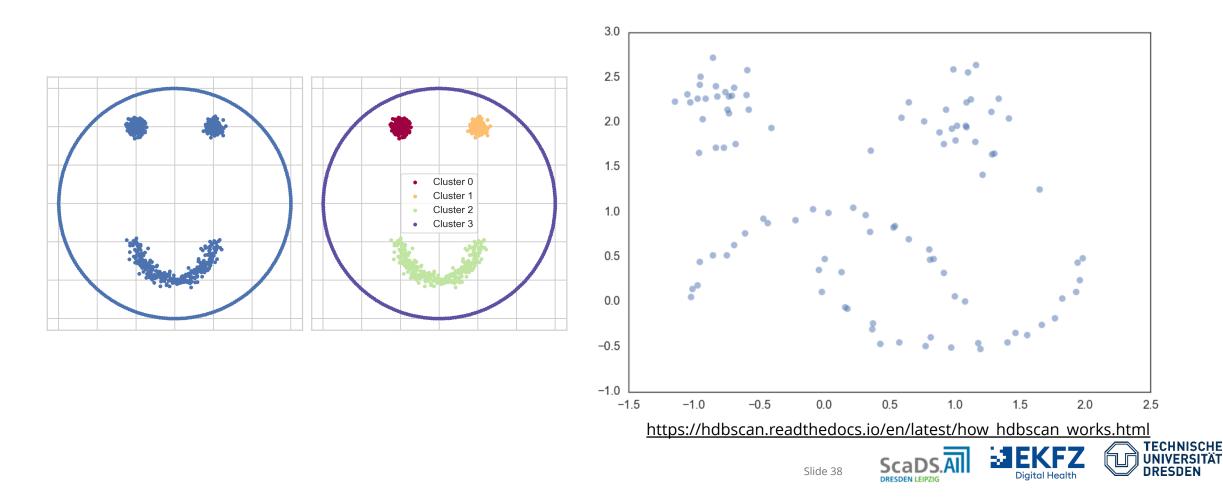
- Simplicity and Speed
- Easy to interpret results
- Well-suited for spherical clusters and of similar size
- Based on Euclidean distance \rightarrow every new point can be assigned to a cluster
- Number of clusters needs to be known
- Vulnerability to outliers
- Difficulty with varying densities
- Convergence to local minima
- Clusters can not capture more complex topologies



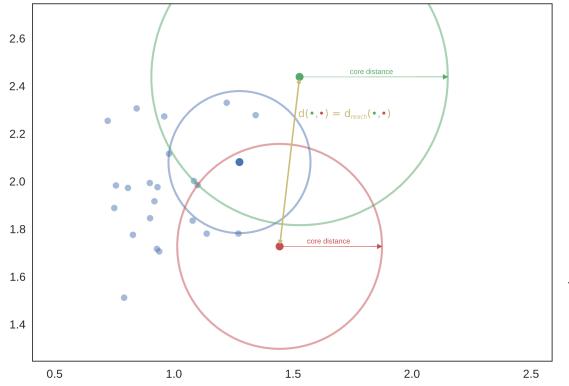


Unlike K-means which uses centroid-based clustering, HDBSCAN relies on **density-based** clustering.

 \rightarrow Assumes that clusters are defined as areas of higher density than the remainder of the dataset, which allows it to find arbitrarily shaped clusters and handle noise (outliers) effectively.



STEP 1: Transform the space according to the density/sparsity.



Core distance: Distance to n-th nearest neighbor **Distance metric**: Mutual reachability Core distance of $Q > d(P, Q) \rightarrow d_{new}(P,Q) = core distance$ Core distance of $Q < d(A, Q) \rightarrow d_{new}(A,Q) = d(A,Q)$

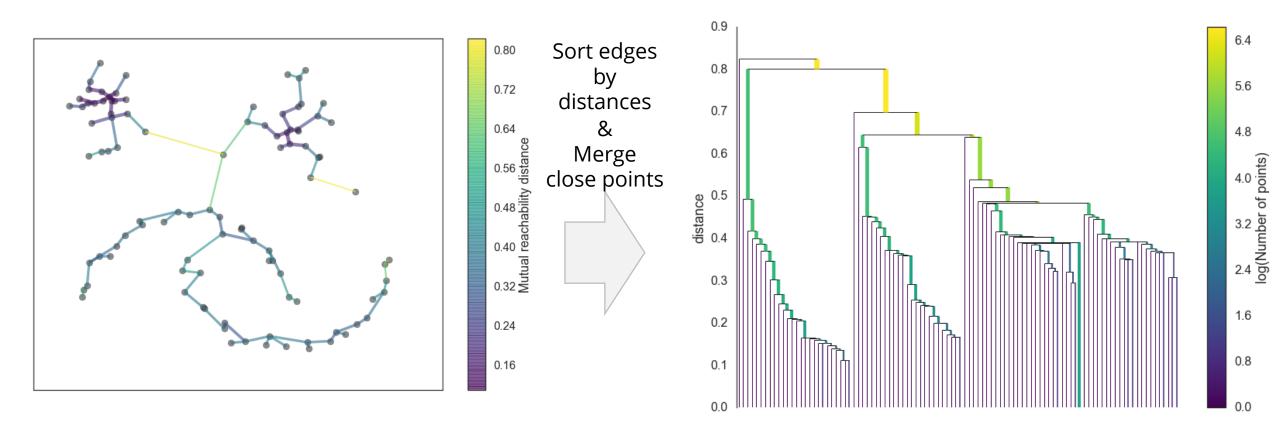
ightarrow Isolated points are pushed further away from clusters

"To find clusters we want to find the islands of higher density amid a sea of sparser noise [...] For practical purposes that means making 'sea' points more distant from each other and from the 'land'."

https://hdbscan.readthedocs.io/en/latest/how hdbscan works.html

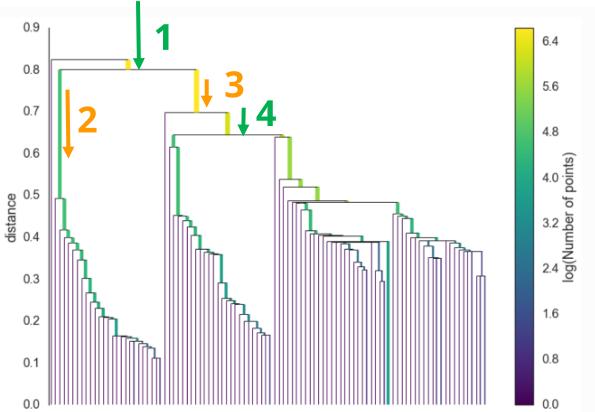
STEP 2: Build the minimum spanning tree of the distance weighted graph.

STEP 3: Construct a cluster hierarchy of connected components.

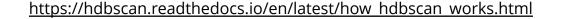


TECHNISCHE UNIVERSITÄT

STEP 4: Condense the cluster hierarchy based on minimum cluster size. Traverse graph from top to bottom and decide whether a new cluster is formed at every crossroads

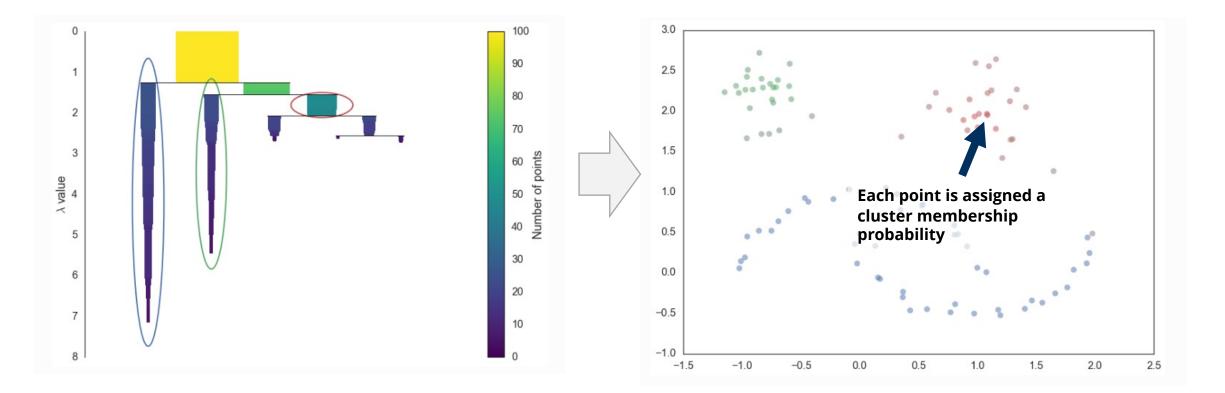


- If points are split into clusters here are both clusters larger than a size threshold? Yes
- 2. No this part of the tree remains a single cluster
- 3. No this part of the tree remains a single cluster
 - Yes remaining points are split into new clusters here



STEP 5: Extract the stable clusters from the condensed tree.

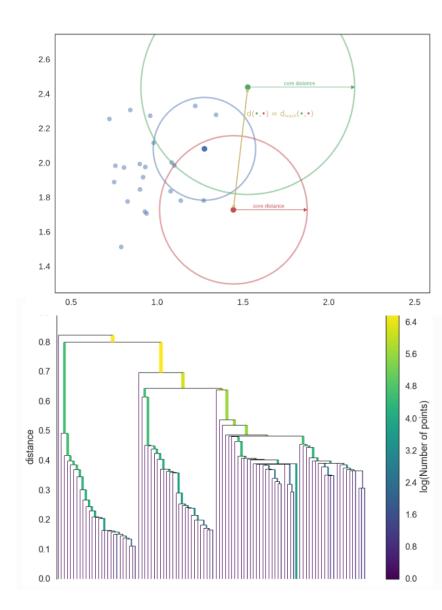
Extracting the clusters with 'largest total ink area' leads to the final selection of clusters



https://hdbscan.readthedocs.io/en/latest/how hdbscan works.html

Slide 42

Variants of Linkage-clustering



There are multiple ways to reconstruct the neighborhood graph and the clusters in the hierarchy schematic:

 Setting a maximum distance between two points to be considered neighbors → DBSCAN <u>https://scikit-</u>
 loarn org/stable/modules/generated/sklearn cluster DBSCAN html

learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

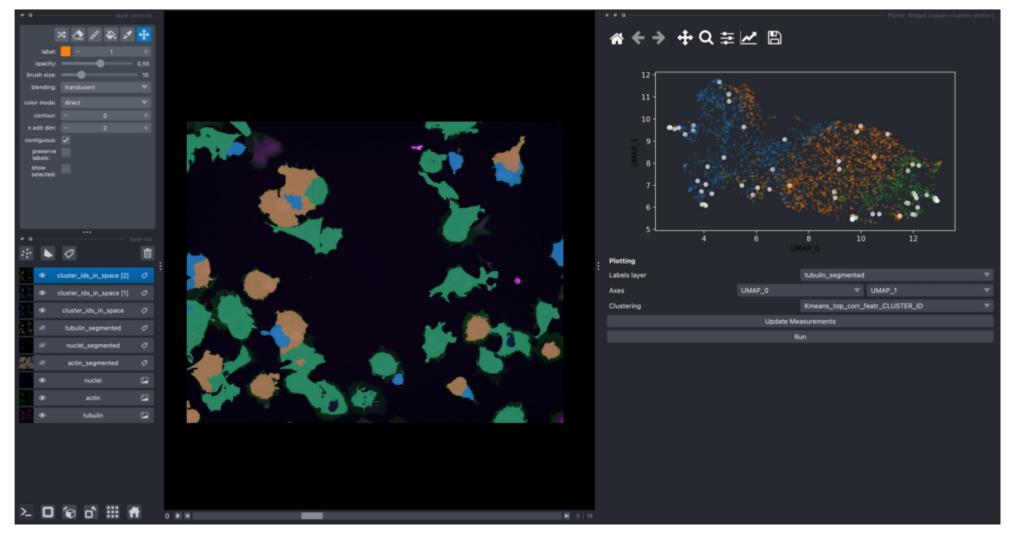
Aggregate points into clusters bottom-up → Agglomerative clustering

<u>https://scikit-</u>

learn.org/stable/modules/generated/sklearn.cluster.Agglomerativ eClustering.html

Interactive Hands-On Session with Napari

Data preparation, feature extraction, feature exploration, clustering, dimensionality reduction



Recap: Environment Preparation

Install conda/miniforge/mamba/micromamba on your machine:

https://biapol.github.io/blog/mara_lampert/getting_started_with_mambaforge_and_python/readme.html

Follow installation instructions for *devbio-napari* collection of *napari* plugins:

https://github.com/haesleinhuepf/devbio-napari

Transaction finished

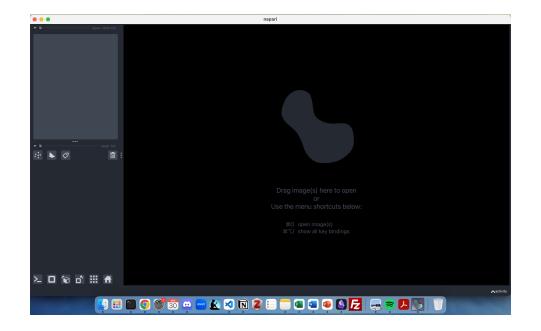
To activate this environment, use:

micromamba activate devbio-napari-env

Or to execute a single command in this environment, use:

micromamba run -n devbio-napari-env mycommand

laura@Lauras-MacBook-Air ~ % micromamba activate devbio-napari-env (devbio-napari-env) laura@Lauras-MacBook-Air ~ % napari



Dataset: Image Set of Human HT29 Colon-cancer Cells (BBBC021)

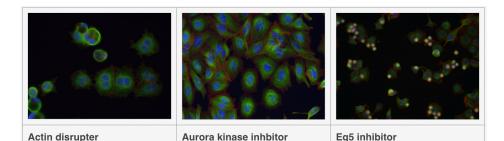
Broad Bioimage Benchmark Collection (BBBC)

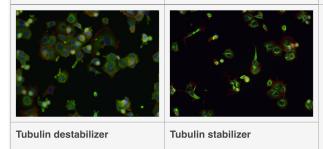
Download data from:

https://bbbc.broadinstitute.org/BBBC021

The dataset is designed for evaluating the ability to predict **biological mechanisms of action** (MoA) based on **morphological changes** in cells caused by chemical compounds. The images have been treated with 113 different small-molecule compounds at various concentrations, resulting in a variety of **cellular phenotypes**.

Key Features of BBBC021:





- Images: The dataset contains thousands of images, each corresponding to a well of a microplate where cells have been treated with a different compound.
- **Labels:** Each image is associated with a compound and often a MoA, providing a clear label for supervised learning tasks. We will use this as a ground truth to compare against the clusters discovered.
- **Metadata:** Includes details about the compound, dose, and batch, which can be used to perform more nuanced analyses and correct for batch effects. ← *Not part of this workshop*

The BBBC resource is described in the following publication: Ljosa V, Sokolnicki KL, Carpenter AE (2012). Annotated high-throughput microscopy image sets for validation. Nature Methods 9(7):637 / doi. PMID: 22743765 PMCID: PMC3627348. Available at <u>http://dx.doi.org/10.1038/nmeth.2083</u>

Slide 46

Dataset: Image Set of Human HT29 Colon-cancer Cells (BBBC021)

Broad Bioimage Benchmark Collection (BBBC)

Download data from:

https://bbbc.broadinstitute.org/BBBC021

The dataset is designed for evaluating the ability to predict **biological mechanisms of action** (MoA) based on **morphological changes** in cells caused by chemical compounds. The images have been treated with 113 different small-molecule compounds at various concentrations, resulting in a variety of **cellular phenotypes**.

BBBC021 v1 images Week1 22123.zip (839436312 bytes)

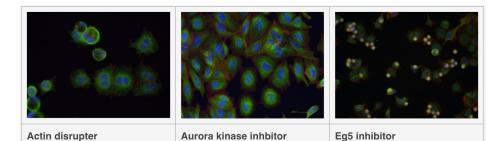
BBBC021 v1 images Week1 22141.zip (851400910 bytes)

BBBC021 v1 images Week1 22161.zip (841371484 bytes)

BBBC021 v1 images Week1 22361.zip (854598915 bytes)

BBBC021 v1 images Week1 22381.zip (861576297 bytes)

BBBC021 v1 images Week1 22401.zip (874848053 bytes)





Slide 47

The BBBC resource is described in the following publication: Ljosa V, Sokolnicki KL, Carpenter AE (2012). Annotated high-throughput microscopy image sets for validation. Nature Methods 9(7):637 / doi. PMID: 22743765 PMCID: PMC3627348. Available at <u>http://dx.doi.org/10.1038/nmeth.2083</u>

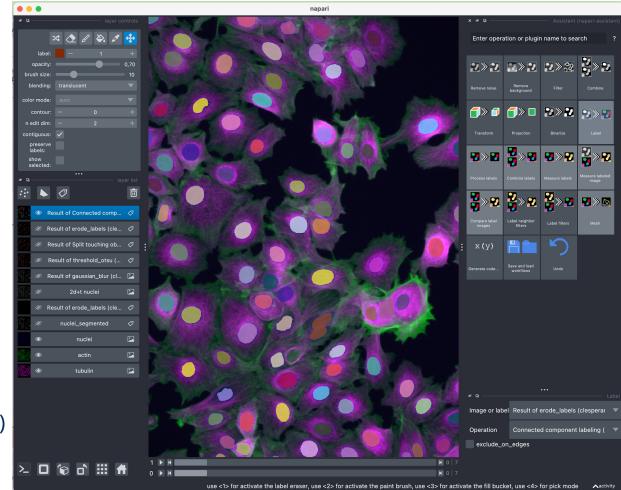
Data Preparation: Segmentation of all 3 channels Nuclei (DAPI, blue) channel

Perform interactive segmentation in napari (only one timepoint):

- Open one of the prepared dataset images
- Right click on the layer \rightarrow split RGB
- Now for the layer that you want to process: Plugins \rightarrow convert to 2D timelapse

Segment nuclei channel:

- Plugins \rightarrow Assistant (napari-assistant)
- \rightarrow Remove noise (gaussian blur)
- \rightarrow Binarize (Threshold Otsu)
- \rightarrow Process labels (Split touching objects, sigma=4)
- \rightarrow Process labels (Erode labels)
- \rightarrow Label (Connected component labelling, scikit-image)



Data Preparation: Segmentation of all 3 channels Actin (Green) channel

Perform interactive segmentation in napari (only one timepoint):

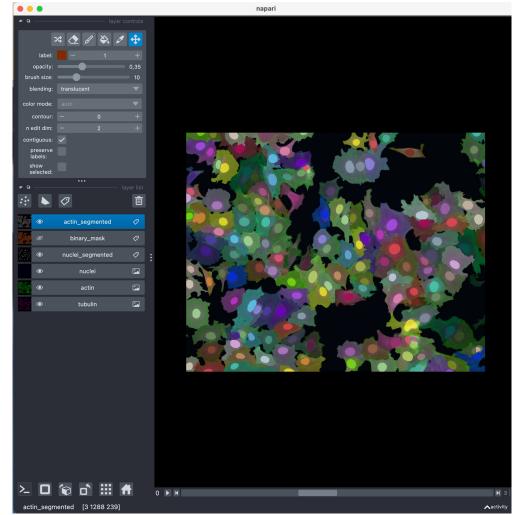
- Open one of the prepared dataset images
- Right click on the layer \rightarrow split RGB
- Now for the layer that you want to process: Plugins \rightarrow convert to 2D timelapse

Segment actin channel:

Plugins \rightarrow Assistant (napari-assistant)

- \rightarrow Binarize (Theshold Huang and Wang 1995)
- \rightarrow Remove noise (Median sphere)
- \rightarrow Filter (Sobel, Detect edges)
- \rightarrow Label (Seeded watershed with nuclei as seeds and binary mask, **only in the notebook!**)

Final result only in the notebook!



Data Preparation: Segmentation of all 3 channels Tubulin (Red) channel

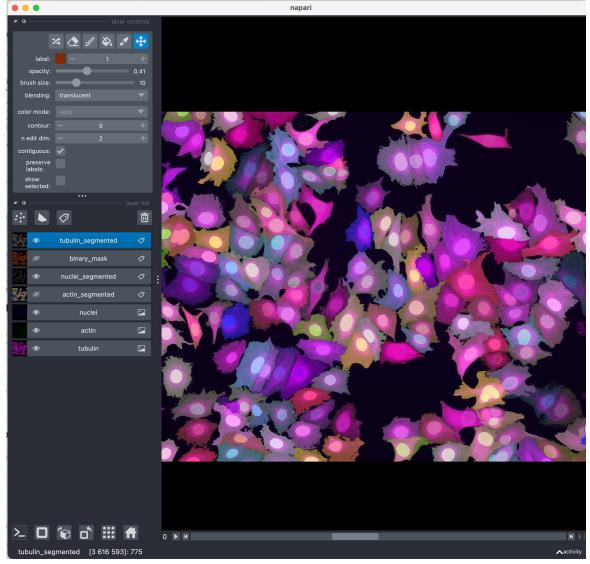
Perform interactive segmentation in napari (only one timepoint):

- Open one of the prepared dataset images ٠
- Right click on the layer \rightarrow split RGB •
- Now for the layer that you want to process: Plugins \rightarrow convert to 2D timelapse

Segment tubulin channel:

Plugins \rightarrow Assistant (napari-assistant)

- \rightarrow Binarize (Theshold Huang and Wang 1995)
- \rightarrow Remove noise (Median sphere)
- \rightarrow Label (Seeded watershed with nuclei as seeds and binary mask, only in the notebook!)

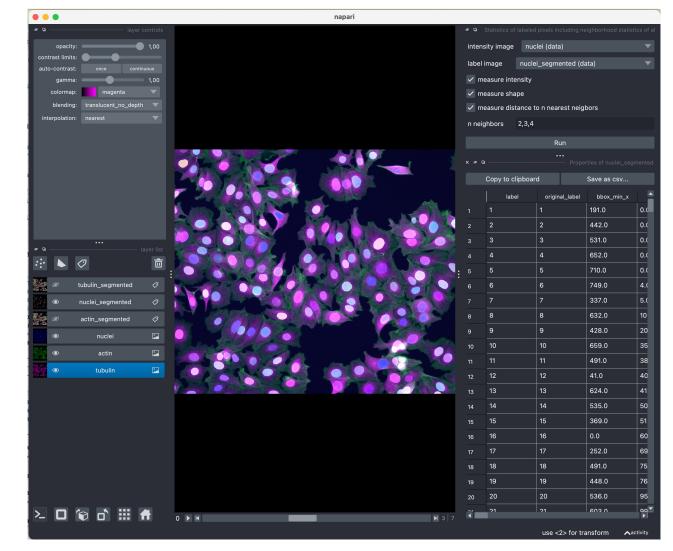


Data Preparation: Extracting Quantitative Measurements

Perform interactive measurements extraction in napari:

- Open one of the prepared dataset images
- Right click on the layer \rightarrow split RGB
- Open corresponding segmentation images
- Now for each layer: Plugins \rightarrow Convert to 2D timelapse
- Tools → Measurement tables → Label statistics of all frames (*clEsperanto*)

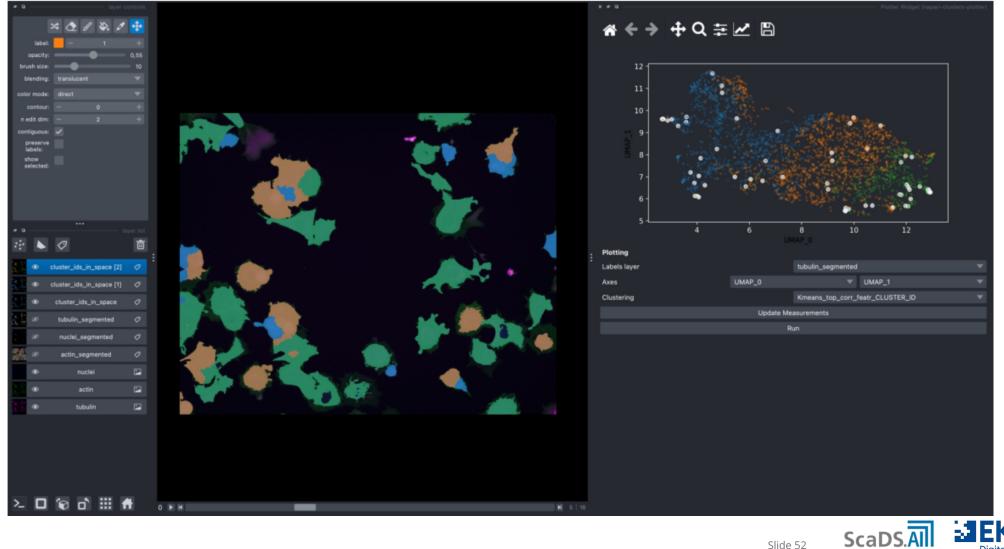
æ Q			Label statistics of all frames (clEsperanto)
intensity image	tubulin (data)		▼
label image	actin_segmented (data)		▼
 intensity 			
✓ size			
shape			
position			
neighbors			
		Run	



<u>Same steps in the notebook!</u>

Dimensionality Reduction & Clustering

Interactively with *napari-clusters-plotter*



DRESDEN LEIPZIG

Image-based Profiling

Ground truth: 6 of the 12 mechanisms can be identified visually:

- Actin disruptors
- Aurora kinase inhibitors
- Eg5 inhibitors
- Microtubule destabilizers
- Microtubule stabilizers
- Epithelial

Can you identify any of the features that are important for any of these mechanisms?

Slide 53