Image Processing Basics

Anja Neumann

With material from:

Robert Haase, ScaDS.AI

Marcelo Leomil Zoccoler and Till Korten, PoL TU Dresden

Mauricio Rocha Martins, Norden lab, MPI CBG

Dominic Waithe, Oxford University

Alex Bird, Dan White, MPI CBG

Slide 1

UNIVERSITÄT

Overview

- Images
- Image Filtering
- Morphological Operations
- Image Processing in Python

Image source: Alex Bird / Dan White MPI CBG

Images and pixels

- An image is just a matrix of numbers
- Pixel: "picture element"
- The edges between pixels are an artefact of the imaging / digitization. They are not real!

Colormaps / lookup tables

- The lookup table decides how the image is displayed on screen.
- Applying a different lookup table does not change the image. All pixel values stay the same, they just appear differently

Pixel value	Display color	Pixel value	Display color	Pixel value	Display color
0 1 2 255		0 1 2 255		0 1 2 255	

UNIVERSITÄT

Histograms

- A histogram shows the probability distribution of pixel intensities.
- The probability of a pixel having a certain grey value can be measured by counting pixels and calculating the frequency of the given intensity.
- · Whenever you see a histogram, try to imagine the lookup-table on the X-axis

Histograms

• To which of the three images does this histogram belong to?

Max: 253 Mode: 212 (5234) Count: 2219

UNIVERSITÄT

Histograms

• To which of the three images does this histogram belong to?

UNIVERSITÄT

With material from

Robert Haase,

Marcelo Leomil Zoccoler and Till Korten, PoL, TU Dresden

UNIVERSITÄT

Filters

- An image processing filter is an operation on an image.
- It takes an image and produces a new image out of it.
- · Filters change pixel values.
- There is no "best" filter. Which filter fits your needs, depends on the context.
- Filters do not do magic. They can not make things visible which are not in the image.
- Application examples
 - Noise-reduction
 - Artefact-removal
 - Contrast enhancement
 - Correct uneven illumination

Image source: Alex Bird / Dan White MPI CBG

Filter

UNIVERSITÄT

Effects harming image quality

Image formation (simulated)

- Aberrations, defocus
- Motion blur

104

103

102

101

- Light from objects behind and in front of the scene (out-of-focus light)
- Dirt on the object slide
- Camera offset

- Shot noise (arriving photons)
- Dark noise (electrons made from photons)
- Read-out-noise (electronics)

https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/49a787514a367829c3e0e1832f6cc533e96d549f/03_image_processing/simulated_dataset.ipynb

Effects harming image quality

Image formation (simulated)

https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/49a787514a367829c3e0e1832f6cc533e96d549f/03_image_processing/simulated_dataset.ipynb

Image filtering

· We need to remove the noise to help the computer *interpreting* the image

UNIVERSITÄT

Linear Filters

•

•

•

- *Linear filters* replace each pixel value with a weighted linear combination of surrounding pixels
- Filter *kernels* are matrices describing a linear filter
- This multiplication of surrounding pixels according to a matrix is called *convolution*

Animation source: Dominic Waithe, Oxford University https://github.com/dwaithe/generalMacros/tree/master/convolution_ani

Mean filter, 3x3 kernel

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

Linear filters

Terminology:

•

- "We convolve an image with a kernel."
- Convolution operator: *

Examples

- Mean
- Gaussian blur
- Sobel-operator
- Laplace-filter

Nonlinear Filters

Non linear filters also replace pixel value inside as rolling window but using a non-linear function.

Examples: order statistics filters

– Min

٠

- Median
- Max
- Variance
- Standard deviation

Noise removal

- Gaussian filter
- · Median filter (computationally expensive)

Image source: Mauricio Rocha Martins (Norden/Myers lab, MPI CBG)

Filtering for improving thresholding results

Blurring +

Thresholding

 \odot

Thresholding

 $\overline{\mathbf{S}}$

In case thresholding algorithms outline the wrong structure, <u>blurring in advance</u> may help. However: **Do not** continue processing the blurred image, continue with the original!

Contour on original image

UNIVERSITÄT

Difference-of-Gaussian (DoG)

Improve image in order to detect bright objects.

Background image

•

UNIVERSITÄT

Laplace-filter

•

- *Second derivative of a Gaussian blur filter*
- Used for edge-detection and edge enhancement
- Also known as the Mexican-hat-filter

Laplacian-of-Gaussian (LoG)

Laplace filtered image

0	-1	0	
-1	4	-1	
0	-1	0	

LoG image

Quiz: Noise removal

• The median filter is a ...

UNIVERSITÄT

Image Processing: Morphological Operations

With material from

Robert Haase,

Marcelo Leomil Zoccoler, Physic of Life, TU Dresden

Refining masks

.

•

- Binary mask images may not be perfect immediately after thresholding.
- There are ways of refining them

•

Erosion: Every pixel with at least one black neighbor becomes black.

Dilation

•

•

Dilation: Every pixel with at least one white neighbor becomes white.

Opening

•

Erosion and dilation combined allow correcting outlines.

- It can separate white (high intensity) structures that are weakly connected
- It may erase small white structures

Closing

•

Erosion and dilation combined allow correcting outlines.

- It can connect white (high intensity) structures that are nearby
- It may close small holes inside structures

Image Processing in Python

With material from

Robert Haase,

Marcelo Leomil Zoccoler, Physics of Life, TU Dresden

https://matplotlib.org/

Working with images in python

Open images

Visualize images

from skimage.io import imread
image = imread("blobs.tif")

from skimage.io import imshow

imshow(image)

<matplotlib.image.AxesImage at 0x245e7(

imshow(image, cmap="Greens_r")

100

<matplotlib.image.AxesImage at

imshow(image, cmap="jet")

150

200

100

100

<matplotlib.image.AxesImage at 0:

imshow(image, cmap="Greens")

<matplotlib.image.AxesImage at (

This does not modify the image data. The images are just shown with different colors representing the same values.

Slide 30

250

Brightness, contrast, display-range

After loading data, make sure you can see the structure you're interested in

plt.imshow(image, cmap='gray')
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x14f22cf71f0>

plt.imshow(image, cmap='gray', vmax=10000)
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x14f22d70310>

ScaDS.A Event: ScaDS.AI BIDS Training Training: Image Filtering May 14th 2024

Cropping and resampling images

• Indexing and cropping *numpy-arrays* works like with python arrays.

imshow(image)

<matplotlib.image.AxesImage at 6

Original image

<matplotlib.image.AxesImage at 0>

Sub-sampled image

cropped image2 = image[0:128, 128:]

imshow(cropped image2)

<matplotlib.image.AxesImage at 0x29e

Cropped image

flipped image = image[::, ::-1] imshow(flipped image)

<matplotlib.image.AxesImage at 0x

Flipped image

Cropping and resampling images
Crop out the region you're interested in

Filters

ScaDS.All

DRESDEN LEIPZIG

... are just functions

denoised_gaussian = filters.gaussian(image3, sigma=1) plt.imshow(denoised_gaussian, cmap='gray')

<matplotlib.image.AxesImage at 0x283aab3ba90>

UNIVERSITÄT LEIPZIG

× –

Q 🖻 🛧 🛸 🗖 🚯

Event: ScaDS.AI BIDS Training Training: Image Filtering May 14th 2024

Binarization / Thresholding

- Turn images into binary images (very basic form of segmentation)
- When using scikit-image, threshold functions typically return a threshold you need to apply yourself.


```
plt.imshow(image_otsu_binary, cmap='gray')
plt.colorbar()
```

threshold

77

<matplotlib.colorbar.Colorbar at 0x1c285b4f550>

Morphological operations

• To *morph* objects in binary images

Summary

- Image basics
- · Image Filtering
- Morphological Operations

· Python libraries

- Matplotlib
- Scikit-image
- Numpy

Coming up next

- Image Segmentation
 - Connected component analysis
 - Voronoi-Otsu-Labeling
- Surface reconstruction

