ScaDS.AI

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Image segmentation Robert Haase

Using materials from Ryan Savill George (PoL, TU Dresden)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Quiz (recap) • How is this operation called?

stackview.insight(image)

DRESDEN LEIPZIG

new_image = image[40]

Robert Haase @haesleinhuepf May 14th 2024

Quiz (recap)

• How is this operation called?

Ask ChatGPT

æ

Du

What does the code image[::5,::5] do?

ChatGPT

The code `image[::5, ::5]` is used in Python, typically with libraries like NumPy or similar, to perform an operation known as "striding" on a 2D array, which is often used to represent an image. This particular snippet of code will downsample the image by a factor of 5 in both dimensions.

Here's a breakdown of what each part of the code does:

- `image`: This represents the 2D array (or image) being operated on.
- `[::5, ::5]`: This is a slicing operation using the `:` operator, which is used to access elements of the array.
 - `::5` in each dimension tells Python to take every 5th element from the respective dimension.
 The first `::5` applies to rows, and the second `::5` applies to columns.

So, if the original image had a size of 100×100 pixels, using `image[::5, ::5]` would create a new image of size 20×20 pixels, where each pixel in the new image corresponds to every fifth pixel of the original image in both horizontal and vertical directions. This method effectively reduces the resolution of the image, which can be useful for image processing tasks where lower resolution might be sufficient or to reduce the computational load.

()) [] [] [] () [] () [] ()

Ask ChatGPT

What does the code image[::5,::5] do?

Explain me like I'm 12 years old and keep it short

ChatGPT

Du

Imagine you have a big grid of colored squares, which is a picture. If you take every fifth square from each row and each column, and put those squares together to make a smaller grid, that's what the code `image[::5, ::5]` does. It makes the big picture smaller by keeping only some of the squares and skipping a lot in between. This makes the picture smaller and simpler!

Training overview: Bio-image Analysis

- [Image] Data Analysis workflows
- Goal: Quantify observations, substantiate conclusions with numbers

 Searching for a threshold where the variance in both classes (above/below threshold becomes minimal.

 Searching for a threshold where the variance in both classes (above/below threshold becomes minimal.

 Searching for a threshold where the variance in both classes (above/below threshold becomes minimal.

- Searching for a threshold where the variance in both classes (above/below threshold) becomes minimal.
- Weighted (!) sum variance

- Searching for a threshold where the variance in both classes (above/below threshold) becomes minimal.
- Weighted (!) sum variance

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

Threshold

- Searching for a threshold where the variance in both classes (above/below threshold) becomes minimal.
- Weighted (!) sum variance

Thresholding: Citing

• Cite the thresholding method of your choice properly

"We segmented the cell nuclei in the images using Otsu's thresholding method (Otsu et Al. 1979) implemented in scikit-image (van der Walt et al. 2014)."

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 1, JANUARY 1979

A Threshold Selection Method from Gray-Level Histograms

NOBUYUKI OTSU

Abstract—A nonparametric and unsupervised method of automatic threshold selection for picture segmentation is presented. An optimal threshold is selected by the discriminant criterion, namely, so as to maximize the separability of the resultant classes in gray levels. The procedure is very simple, utilizing only the zeroth- and the first-order cumulative moments of the gray-level histogram. It is straightforward to extend the method to multithreshold problems. Several experimental results are also presented to support the validity of the method.

Terminology

Intensity image

Binary image

No matter how they are displayed

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

Label image

[y=152, x=92] = 0

Connected component labelling

- In order to allow the computer differentiating objects, connected component analysis (CCA) is used to mark pixels belonging to different objects with different numbers
- Background pixels are marked with 0.
- The maximum intensity of a labelled map corresponds to the number of objects.

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

UNIVERSITÄT

LEIPZIG

Common image segmentation workflows

 Presumably the most common segmentation algorithm used for fluorescent microscopy images:
 Limitation: Dense

objects

• Gaussian blur, Otsu's Threshold, Connected Component Labeling

Voronoi-Tesselation

• For separating objects using spatial constraints (not intensity-based)

Voronoi-label-image

Common image segmentation workflows

Combination of Gaussian blur, Otsu's Threshold and Voronoi-labeling

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

https://haesleinhuepf.github.io/BioImageAnalysisNotebooks /20 image segmentation/11 voronoi otsu labeling.html

Voronoi-Otsu-Labeling

- Gaussian-Blur
- Otsu-Thresholding
- Spot-detection

DRESDEN LEIPZIG

• Watershed on the binary image

May 14th 2024

nsbatwm made image

https://haesleinhuepf.github.io/BioImageAnalysisNotebooks/20_image_segmentation/11_voronoi_otsu_labeling.html https://www.youtube.com/watch?v=evgRgDfVuEc

• The watershed algorithm for binary images allows cutting one object into tow where it's reasonable.

• The watershed algorithm for binary images allows cutting one object into tow where it's reasonable.

- The watershed algorithm for binary images allows cutting one object into two where it's reasonable.
- The distance-maps are typicall made from binary images. It does not take the original image into account

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

Watershed use-cases

- Seeded watershed: Flood regions from pre-defined seeds
- Example: Flood cells from nuclei positions

UNIVERSITÄT

LEIPZIG

24

150

200

Label post-processing / selections

- Remove objects at the image border
- Their measurements (shape, size) would be misleading anyway

Label post-processing / selections

- Excluding small / large objects
- Common correction-step in case segmentations contain noise-related small particles

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Napari Robert Haase

Funded by

Bundesministerium für Bildung und Forschung

SACHSEN

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Chan Zuckerberg Initiative %

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

These slides and the related training materials can be reused under the terms of the <u>CC-BY 4.0</u> license. <u>https://doi.org/10.5281/zenodo.10207321</u> https://scads.github.io/napari-tutorial-2023

Napari

A viewer for n-dimensional image data written in Python

Napari – Graphical User Interface

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

31

UNIVERSITÄT

LEIPZIG

Napari – Graphical User Interface

Context / data type dependent tools

32

• Mixing interactivity and reproducibility

Initialization
 import napari

Create an empty viewer
viewer = napari.Viewer()

• Adding images viewer.add_image(image)

35

UNIVERSITÄT LEIPZIG

- Removing layers
- for l in viewer.layers:
 viewer.layers.remove(l)
- Modify visualization while adding layers viewer.add_image(image, colormap='green')
- Modify layers after adding

layer = viewer.add_image(image)

• Binary images and label images visualized as label layers

from skimage.filters import threshold_otsu
threshold = threshold_otsu(blurred_image)
binary_image = blurred_image > threshold

Add a new labels layer containing an image
viewer.add labels(binary image)

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

38

UNIVERSITÄJ

LEIPZIG

The Napari Assistant

• A pocket-calculator-like interface to build image analysis workflows

Assistant			x
Enter operatio	n or plugin name	to search	?
⋧≫⋧	≥≥	2 » %	×× ×
Remove noise	Remove background	Filter	Combine
] »]		* *	•
Transform	Projection	Binarize	Label
** * *	*	** * *	₩ ₩
Process labels	Combine labels	Measure labels	Measure labeled image
* * *	N N	*	X > X
Compare label images	Label neighbor filters	Label filters	Mesh
	х (у)		5
Measurement	Generate code	Save and load workflows	Undo

Robert Haase @haesleinhuepf BIDS Lecture 4/14 April 23rd 2024

https://www.napari-hub.org/plugins/napari-assistant

The Napari Assistant

- Classical image processing operations + advanced tools
- Saving&loading supported
- Undo [redo]
- Hints for next steps
- ...

Big thanks to:

Ryan Savill @RyanSavill4

Robert Haase @haesleinhuepf BIDS Lecture 4/14 April 23rd 2024

Workflow building

- Try different algorithms, e.g. for removing noise
- Find them in the pulldown

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

Workflow building

 Try different binarization algorithms

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

43

UNIVERSITÄT

LEIPZIG

The Tools menu

• Organized in categories

🔝 napari						- 🗆 X
File View Window	w Plugins	Tools Help		Tools Help		
# Q		Blender		Blender	•	
		Filtering / background removal		Filtering / background removal	×.	Black top-hat (n-SimpleITK)
opacity:		Filtering / deconvolution		Filtering / deconvolution	•	Black top-hat (scipy, nsbatwm)
contrast limits:	•	Filtering / edge enhancement		Filtering / edge enhancement	•	Divide by Gaussian background (clesperanto)
auto-contrast:	once co	Filtering / noise removal	 Bilateral (n-SimpleITK) 	Filtering / noise removal	×.	Maximum (scipy, nsbatwm)
damma.		Filtering	 Binominal blur (n-SimpleITK) 	Filtering	×.	Minimum (scipy, nsbatwm)
		Games	 Butterworth (scikit-image, nsbatwm) 	Games	×.	Rolling ball (scikit-image, nsbatwm)
colormap:	gray	lmage math	 Curvature flow (n-SimpleITK) 	Image math	►	Subtract Gaussian background (clesperanto)
blending:	additive	Measurement maps	 Gaussian (clesperanto) 	Measurement maps	•	Top-hat (box, clesperanto)
internelation:	pearest	Measurement post-processing	 Gaussian (n-SimpleITK) 	Measurement post-processing	•	White top-hat (n-SimpleITK)
	nearest	Measurement tables	 Gaussian (scikit-image, nsbatwm) 	Measurement tables	•	White top-hat (scipy, nsbatwm)
		Measurement	 Mean (box, clesperanto) 			ALL DOCTORS AND ALL DOCTORS
		Points	 Median (n-SimpleITK) 	Points	- F	A Profile Card
		Registration	 Median (scipy, nsbatwm) 	Registration	•	CARDA REPERTY ROOM
		Segmentation / binarization	 Percentile (scipy, nsbatwm) 	Segmentation / binarization	•	
# Q		Segmentation / labeling	• • • • • • • • • • • • • • • • • • •	Segmentation / labeling	×.	Connected component labeling (clesperanto)
·· • 0		Segmentation post-processing	· (2.8)	Segmentation post-processing	•	Connected component labeling (n-SimpleITK)
•• •		Surfaces	· 6773	Surfaces	•	Connected component labeling (scikit-image, nsbatwm)
	nuclei	Tracking	• 23/1473 Volter	Tracking	•	Create labels from points (nppas)
"Wa ⁶⁶ .4		Transforms	• 26.252 area \$2.2	Transforms	•	Eroded-Otsu-labeling (clesperanto)
		Utilities	• 100 cm (m) cm	Utilities	•	Gauss-Otsu-labeling (clesperanto)
		Visualization	• 0.07 95 80 30 a	Visualization	•	Gauss-Otsu-labeling (nsbatwm)
		Tools Info	- CHENNEL	Tools Info		Morphological watershed (n-SimpleITK)
<u>≻</u> 🛛 🗑 r	î 🏼 🕇					Object segmentation (APOC)
						Object segmentation (apply pretrained, APOC)
						Scalar image K-means clustering (n-SimpleITK)

TECHNISCHE

45

UNIVERSITÄT

LEIPZIG

Short-cuts: Voronoi-Otsu-Labeling

Also check out the Tools > Segmentation / labeling menu

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

Also check out the Tools > Segmentation / labeling menu

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

Label erosion, dilation, opening, closing, ...

• In Napari Assistant: Process labels

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

Browse operations

Robert Haase @haesleinhuepf BIDS Lecture 4/14 April 23rd 2024

https://www.napari-hub.org/plugins/napari-assistant

Export code to Jupyter Notebooks

Export code to Jupyter Notebooks

Simple O 0 💶 1 🌐 Python 3 (ipykernel) | I... Mode: Comma... 🛞 Ln 1, Co... test.ipy...

蛬

å

ScaDS.AI

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Exercises

Robert Haase

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Napari - Exercises

- Start napari from the terminal!
- Follow the instructions to set up a workflow and export a Jupyter notebook

https://github.com/ScaDS/BIDS-lecture-2024/blob/main/04b_napari_notebooks/napari-assistant.md

https://github.com/ScaDS/BIDS-lecture-2024/blob/main/04b_napari_notebooks/notebook_export.md

55

Napari - Exercises

• Start using napari from Python

ScaDSAI DRESDEN LEIPZIG

BIDS Training School <u>https://github.com/ScaDS/BIDS-lecture-</u>

2024/blob/main/04b_napari_notebooks/napari_intro.ipynb

Image segmentation exercises

Try out segmentation algorithms and apply them to other datasets

 C 11_voronoi_o JupyterLab 	< +			- 🗆 X				
← → C ① localhost:8888/la	ab/tree/04a_image_seg	gmentation/11_voronoi_otsu_labeling.ipynb	\$	다 🛞 :				
File Edit View Run Kernel 1	Tabs Settings Help				✓ C 11_voronoi_o JupyterLab ×	+		-
v Launc 🗈 🛨 C		🖸 Launcher X 🗏 11_voronoi_o	tsu_labeling.ipy × +	° 4	← → C ① localhost:8888/lal	b/tree/04a image se	amentation/11 voronoi otsu labelina.ipynb	☆ ♪
Filter files by name	Q		upt Kernel Restart Kernel Restart Kernel and Run All C	ells 😝 🚥	C File Edit View Run Kernel T	Tabs Sattings Help		
/ 04a_image_segmentation /		Applying the algorit	h			abs settings help	Z Launcher X	
Name 🔺	Last Modified	Voronoi-Otsu-labeling is a segmenta sigma controls how close detected c	tion algorithm, which asks for two sigma parameters. The ells can be (spot sigma) and second controls how preci	first		0	🖻 + 🛠 🗇 🖱 Run Selected Cells Interrupt Kernel Restart Kernel	Restart Kernel and Run All Cells
 •	8 minutes ago	segmented objects are outlined (ou	tline_sigma). This is the algorithm implemented in the		Fliter files by name	Q	Eversice	
• 🔲 11_voronoi_otsu_labeling.ipynb	8 minutes ago	napari-segment-blobs-and-things-w	ith-membranes:		/ 04a_image_segmentation /		Exercise	
• 📃 12_Segmentation_3D.ipynb	5 minutes ago	[3]: label image = nsbatwm.voronoi o	su labeling(cronned image		i Name	Last Modified	Load the blobs.tif example dataset from last week - without	moving the file! Apply the two
• 🖪 13_watershed.ipynb	4 minutes ago	[5]. Inter_image = instation.voi onor_o	spot_sigma=5, outline sigma=1)		 data • • • • • • • • • • • • • • • • • • •	5 minutes ago 8 minutes ago	algorithms Gauss-Otsu-Labeling and Voronoi-Otsu-Labeling to it both images in a variable and print out the variable.	. Get the number of objects from
		lakal incer			🔭 🗉 11_voronoi_otsu_labeling.ipynb	8 minutes ago	Optional: Write a function that loads the image comparts it and	returns the number of chiests
		Taber_image			• 📃 12_Segmentation_3D.ipynb	5 minutes ago	Optional, write a function that loads the image, segments it and	returns the number of objects.
		[3]:	nsbatwm mad image	e	• 🖪 13_watershed.ipynb	4 minutes ago	[]:	
		0	shape (200, 200))				
		25 -	dtype int3	2				
		50 -	size 156.2 k	в				
		75 -	min	0				
		100 -	max 1	2				
		125 -						
		150 -		-				
Simple 🔵 0 🛐 5 🤀 Pytho	on 3 (ipykernel) Idle		Mode: Command 🛞 Ln 1, Col 1 11_voronoi_otsu_labe	ling.ipynb 1 Д				
					Simple 0 5 🛱 Pythor	n 3 (invkernel) I Idle	Mode: Command 🛞 Lin	1 Col 1 11 voronoj otsu labeling in

Image Segmentation BIDS Training School Robert Haase @haesleinhuepf May 14th 2024

https://github.com/ScaDS/BIDS-lecture-

2024/tree/main/04a_image_segmentation

