
Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 1

CENTER FOR SCALABLE DATA ANALYTICS AND
ARTIFICIAL INTELLIGENCE

TRAINING: Python Programming Basics
SPEAKER: Matthias Täschner, Robert Haase

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 2

AGENDA

• Programming basics

• What is Python?
• Terms and definitions
• Execution of Python code

• Built-in types
• Truth and Boolean
• Numeric types
• Sequence types
• Dictionaries

• Conditions

• Loops

• Virtual Environments

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 3

Programming Basics

What is programming?

• Use of programming language to implement software requirements as a computer program

• Computer program is converted into machine code for execution (compiled or interpreted)

What is a programming language?

• Tool for formulating algorithms and data structures

• Formal language with syntax and semantics

Algorithm
• Consists of instructions

to solve a problem
• Instructions consist of

permitted patterns

Data Structure
• Object to store and

organize data in
memory

Syntax
• Formal set of rules for

the use of instructions
• “Grammar” of a

programming language

Semantics
• Actual meaning of the

instructions

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 4

What is Python?

Universal high-level programming language, also often used as scripting language

• Released in 1994, recent stable version is 3.12

• Goals: Simplicity, clarity, extensibility
• Few reserved keywords, reduced syntax

• Extensive standard library, e.g., file handling, math, text processing, …

• Easy integration of additional packages / libraries

• Open Source, portable on multiple platforms

• Extensively used in data science, data analysis, artificial intelligence

• Easy management and use of additional packages and extensions

• Built-in package manager “pip” with Python package index PyPI

• Python distributions shipping Python + alternative package manager (e.g., “conda”)
+ virtual environments + preinstalled packages) – e.g., Miniconda, Anaconda

(TM) Trademark of the PSF
https://www.python.org

https://pypi.org/
https://docs.anaconda.com/free/miniconda/
https://docs.anaconda.com/free/anaconda/
https://www.python.org/

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 5

What is Python?
Terms and definitions

Variable
Container for storing assigned
data in memory, using a name for
reference

Object
Complex structure which bundles
data and methods to operate on
the data

Method
Block of code tied to an object,
usable via dot-Operator
(”method is mine”)

Variable
name

Value of
specific type

Assignment

Definition of
custom object

Instantiation of
object and
assignment
to variable

Use of object’s
method

Everything in Python

is an object

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 6

What is Python?
Terms and definitions

Function
Independent block of reusable
code for a specific task
(“function is free”)

Module
File containing Python code which
can be imported into other
Python code

Import module for
additional functionality

Definition of
custom function

Use of custom
function

Use of built-in
function

Use of built-in
function

Use method from
imported module

Comment, not
interpreted

Comment
Lines in code not interpreted by
Python, used for documentation,
starting with #

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 7

What is Python?
Execution of Python code

Execution via Python file

• Save code in file with file extension “.py”

• Execute file with installed Python

Interactive execution in terminal
• Start interactive Python session

• Enter and execute instructions line by line

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 8

What is Python?
Execution of Python code

Interactive execution in Jupyter Notebook
• Web-based interface with cells for

• Executable Python code

• Rich text for documentation

• Rich output for text, images, plots

• Jupyter Lab with

• Jupyter notebook

• File browser

• Terminal access

• Plugins for more functionalities

https://jupyter.org/try-jupyter/lab/index.html

https://jupyter.org/try-jupyter/lab/index.html

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 9

Built-in types
Truth and Boolean

Truth value and Boolean

• Objects can be tested for a truth value

• Truth values can be used in conditions

• Represented by Booleans: True (1) and False (0)

• There are default truth values for objects,
e.g., number zero or empty strings are considered False

Boolean operators and comparisons
• Used to evaluate a truth value

• Operators are and, or, not

• Comparisons are, e.g., < (strictly less), == (equal),
>= (greater than or equal), != (not equal)

https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 10

Built-in types
Numeric types

Numeric types
• Integers (int)

• Floating point numbers (float)

• Complex numbers (complex)

Supported operations
• Mathematical operators, e.g., +, -, /

• Comparisons

• Mathematical functions

Some may behave
unexpected!

https://docs.python.org/3/library/stdtypes.html

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 11

Built-in types
Sequence types

Some basics on sequences

• Data structures to store and manipulate multiple values

• Values can be of homogeneous or heterogeneous type

• Sequences are either mutable (values can be changed “in place”) or immutable

• Values can be accessed by an index on the sequence, starting at 0

A B C D E F G H IValues

Index 0 1 2 4 5 6 7 8 9

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 12

Built-in types
Sequence types

Lists

• Mutable, construction via brackets []

• Homogenous or heterogenous values

Get elements from
index 1 to 2

Get all elements
up to index 3

Get every second
element, start at index 2

Call built-in method
to reverse the list

Get all elements
starting at index 2

Use negative index to
start at the last element

https://docs.python.org/3/library/stdtypes.html

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 13

Built-in types
Sequence types

Tuples

• Immutable, construction via parentheses ()

• Homogenous or heterogenous values

• Indexing and slicing works like for lists

Ranges

• Immutable, construction via range()

• Homogenous numerical values

• Indexing and slicing works like for lists

https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 14

Built-in types
Sequence types

Text sequence - string

• Immutable, construction via quotes “ “, ‘ ‘

• Values of type Unicode codepoints

• Indexing and slicing works like for lists

Convert all letters to
uppercase

Split the string at
whitespace and
return a list of

resulting strings

https://docs.python.org/3/library/stdtypes.html

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 15

Built-in types
Sequence types

Further operations on sequences

• Sequences can be concatenated (append them) with + operator

• Sequences can be tested for their content with in

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 16

Built-in types
Dictionaries

Mapping types or dictionaries (dicts)

• Mutable, construction via braces { }

• Provide a mapping from key à value, or a
list of key à value pairs

• Indexing and slicing works NOT like for lists

https://docs.python.org/3/library/stdtypes.html

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 17

Conditions

Conditional statements

• Used as control flow tool, e.g., to check
• if pre-requisites are met
• if data has the right format or value
• if there are any errors

• The if statement is used to
• Evaluate a Truth value for given

expressions, e.g., with Boolean
operators of comparisons

• Executes subsequent code if the
Truth value evaluates to True

• The else statement can be used to
execute code if the given expressions
evaluate to False

?True False

https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/tutorial/controlflow.html

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 18

Loops

Loop statements

• Used as control flow tool for repeated
execution of code

• Different kinds of loop statements
• for: iterates over elements of a sequence

(e.g. list), or iterable objects in general

• while: repeats subsequent code as long
an expression is True

• Both can be controlled in more detail using

• break to terminate the loop

• continue to skip the current iteration

https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/tutorial/introduction.html
https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/reference/simple_stmts.html

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 19

Virtual Environments

Isolated spaces on your system to manage Python versions and packages

Operation System (OS)

Conda Installation
C:\Users\<User>\AppData\Local\miniconda3
…\pkgs
…\envs

“virt-env1”

…\envs\virt-env1
Python 3.12
Used Packages:
- Package A
- Package B
- Package C

“virt-env2”

…\envs\virt-env2
Python 3.9
Used Packages:
- Package B
- Package C
- Package D

“virt-env3”

…\envs\virt-env3
Python 3.11
Used Packages:
- Package D
- Package F

Available Python
e.g. in Terminal, IDE
“python hello_world.py”

conda env create –n virt-env1

conda activate virt-env1

conda deactivate

conda activate virt-env3

conda env create –n virt-env2

conda env create –n virt-env3

System-native
global Python

Installation

Python 3.7
C:\Users\<User>\AppData\
Local\Programs\Python\...

…with all installed packages
(e.g. Package A, B, … ,F)

Training: Python Programming Basics
Speaker: Matthias Täschner, Robert Haase Slide 20

Any questions or remarks?

