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Machine learning for image segmentation

Supervised machine learning: We give the computer some ground truth to learn from

The computer derives a model or a classifier which can judge if a pixel should be 
foreground (white) or background (black)

Example: Binary classifier

Raw image Binary image

?
Model / 
classifier

Training
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Random forest based image segmentation

Decision trees are classifiers, they decide if a pixel should be white or black

Random decision trees are randomly initialized, afterwards evaluated and selected

Random forests consist of many random decision trees

Example: Random forest of binary decision trees

Ye
s

No

No Ye
s

No Ye
s

No Ye
s

Ye
s

No

No Ye
s

No Ye
s

No Ye
s

Ye
s

No

No Ye
s



Slide 5

Robert Haase
@haesleinhuepf
AI4Medicine
Sept 24th 2025

Deriving random decision trees

For efficient processing, we randomly sample our data set

• Individual pixels, their intensity and their classification

X1

X
2

Note: You cannot use a single threshold to make the decision 
correctly

Threshold
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Deriving random decision trees

Decision trees combine several thresholds on several parameters

X1

X
2

X1 > 
0.6

X2 > 
0.8

YesNo

No Yes



Slide 7

Robert Haase
@haesleinhuepf
AI4Medicine
Sept 24th 2025

X2 > 
0.7

Deriving random decision trees

Depending on sampling, the decision 
trees are different

X1

X
2

X1 > 
0.4

X2 > 
0.1

YesNo

No Yes

No Yes
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Random Forest Pixel Classifiers

By training many decision trees, errors are equilibrated

Sampling
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https://bbbc.broadinstitute.org/BBBC038
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Random Forest Pixel Classifiers

Combination of individual tree decisions by voting or max / mean

Majority

Prediction
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Random Forest Pixel Classifiers

Typical numbers for pixel classifiers in microscopy image analysis

Depth <= 4

Number of trees > 100

Available features:

• Gaussian blur 
image

• DoG image
• LoG image
• Hessian
• ….
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Explainable Artificial Intelligence (XAI)

• “Es gibt derzeit noch keine allgemein akzeptierte Definition von XAI.”

Wikipedia [1]

Relevant Aspects:

• Explainability vs. Interpretability of AI-algorithms

• We seek to enable humans to 

• predict results of AI Systems,

• trust AI-Systems and

• using AI-Systems effectively.

[1] https://de.wikipedia.org/wiki/Explainable_Artificial_Intelligence

https://de.wikipedia.org/wiki/Explainable_Artificial_Intelligence
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Explanation of Random Forest Classifiers

… by reading code … is quite useless

https://github.com/haesleinhuepf/apoc/blob/
main/demo/mutlichannel_images.ipynb

Input 
images

Feature 
images

Decision trees

Classification 
result 

images

(OpenCL)

https://github.com/haesleinhuepf/apoc/blob/main/demo/mutlichannel_images.ipynb
https://github.com/haesleinhuepf/apoc/blob/main/demo/mutlichannel_images.ipynb
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Explainability

A logically consistent line of argumentation that depicts a situation or an algorithm with 
complete transparency.

Intrinsically explainable AI-algorithms
• Example: Linear Regression

𝑓 𝑥1, 𝑥2 = 𝑤1𝑥1 + 𝑤2𝑥2

If w1 is much bigger than w2, the 
result depends much more on x1 

compared to x2.

Model 
explainable

Results
predictable
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Explainability

A logically consistent line of argumentation that depicts a situation or an algorithm with 
complete transparency.

Intrinsically explainable AI-algorithms
• Example: Linear Regression

𝑓 𝑥1, 𝑥2 = 𝑤1𝑥1 + 𝑤2𝑥2

If w1 is much bigger than w2, the 
result depends much more on x1 

compared to x2.

Black-Box AI-algorithms
• Example: Deep Neural Networks 

(DNN)

“sewing 
machine” [1]

Not easily explainable and predictable

https://github.com/haesleinhuepf/git-bob-
playground/issues/241

https://github.com/haesleinhuepf/git-bob-playground/issues/241
https://github.com/haesleinhuepf/git-bob-playground/issues/241
https://github.com/haesleinhuepf/git-bob-playground/issues/241
https://github.com/haesleinhuepf/git-bob-playground/issues/241
https://github.com/haesleinhuepf/git-bob-playground/issues/241
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Interpretability

Visualization of intermediate results and their influence on results

https://haesleinhuepf.github.io/xai/30_shap/pixel_classifier.html

Model-agnostic methods
Example: Shapley’s Additive exPlanations (SHAP)

https://haesleinhuepf.github.io/xai/30_shap/pixel_classifier.html
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Interpretability

Visualization of intermediate results and their influence on results

Model-agnostic methods
Example: Shapley’s Additive exPlanations (SHAP)

https://haesleinhuepf.github.io/xai/30_shap/pixel_classifier.html
https://haesleinhuepf.github.io/xai/60_grad-cam/classification_resnet.html
Image source: Cropped from HTW Dresden (Fotograf: Peter Sebb) licensed CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=15652763

Model-specific methods
Example: Gradient Class Activation Maps (Grad-
CAM)

“beach wagon”

https://haesleinhuepf.github.io/xai/30_shap/pixel_classifier.html
https://haesleinhuepf.github.io/xai/60_grad-cam/classification_resnet.html
https://haesleinhuepf.github.io/xai/60_grad-cam/classification_resnet.html
https://haesleinhuepf.github.io/xai/60_grad-cam/classification_resnet.html
https://commons.wikimedia.org/w/index.php?curid=15652763
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Explainable AI

Depending on the target group [for the explanation], the influence of data 
is more important than how AI algorithms work.

• Many computer scientists want to explain and understand AI methods.

• Biologists use AI as a method to explain biological processes.

• Example: "What parameters distinguish round objects from elongated ones?"

https://haesleinhuepf.github.io/xai/30_shap/object_classification.html

https://haesleinhuepf.github.io/xai/30_shap/object_classification.html
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Recap: Feature selection

• Which measurement / parameter / feature is related 
to the effect I’m investigating?

• Example goals:

Pixel classification

• Area
• Perimeter
• Aspect ratio
• …

• Round
• Elongated

• Amplitude
• Energy
• Duration
• …

• Noise
• Tourists jumping 

on a sensor
• Earthquake 

approaching

Object classificationSignal classification
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Collaborative game theory

If players collaborate, how is the impact on a team if another player joins?

Example game goal: maximize cards of the same colour. 

?

Value for both teams: 0
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Collaborative game theory

If players collaborate, how is the impact on a team if another player joins?

Example game goal: maximize cards of the same colour. 

?

Value for team green: 0.1
Value for team blue: 0.3
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SHAP

SHapley’s Additive exPlanations

SHAP value 
of feature i

Sum over all 
Subsets of 
Features not 
including i

Quality of 
classifier using 
feature i

Quality of 
classifier not
using feature i

Weight related 
to number of 
used features 
in relation all 
players

SHAP value 
of player i

Sum over all 
Subsets of 
Players not 
including i

Chance to win 
game of coalition 
without player i

Chance to win 
game of coalition 
including player i

Weight related to 
number of players 
in a coalition in 
relation to 
undecided players 
and all players

Game 
theory

$\phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F|-|S|-
1)!}{|F|!} [f_x(S \cup \{i\}) - f_x(S)]$

Analogously, this can 
be done with data 
points instead of 

features.
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SHAP

Allows interpreting [pixel] classification results

?
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SHAP

Allows interpreting [pixel] classification results

?

“If intensity in the 
top-hat image is high, 
the classifier tends to 

select the positive 
class (orange).”
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SHAP

Allows interpreting [pixel] classification results

?

“If intensity in the 
top-hat image is low, 

the classifier needs to 
take other features 

into account.”



Slide 25

Robert Haase
@haesleinhuepf
AI4Medicine
Sept 24th 2025

SHAP

Allows interpreting [pixel] classification results

?

“The random feature 
has no value for 
classification.”
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Pitfall: Correlation

Correlated features may harm interpretability
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Pitfall: Correlation

Correlated features may harm interpretability

Features may 
appear less 

valuable.

Features may 
appear less 

valuable.
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Read more…

https://christophm.github.io/
interpretable-ml-book/

https://www.youtube.com/watch?
v=dw63QH_b3Jo

https://www.amazon.de/dp/
3030686396

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://www.youtube.com/watch?v=dw63QH_b3Jo
https://www.youtube.com/watch?v=dw63QH_b3Jo
https://www.amazon.de/dp/3030686396
https://www.amazon.de/dp/3030686396


Slide 40

Robert Haase
@haesleinhuepf
AI4Medicine
Sept 24th 2025

Summary: Explainable AI

Methods of XAI can be classified on different scales

Intrinsically
explainable

Black-Box

Functionality of 
algorithms

Influence
of data

Meaning of 
data

Explainability

Interpretability

Model-agnostic

Model-specific



Slide 41

Robert Haase
@haesleinhuepf
AI4Medicine
Sept 24th 2025

CENTER FOR SCALABLE DATA ANALYTICS AND 
ARTIFICIAL INTELLIGENCE

Exercises

Robert Haase

Funded by

These slides and the related training materials can be reused 
under the terms of the CC-BY 4.0 license.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Slide 42

Robert Haase
@haesleinhuepf
AI4Medicine
Sept 24th 2025

SHAP Analysis in Python

Use the opportunity 
and explain SHAP 
plots like this one!

https://scads.github.io/ai4medicine-
2025/day2.4_explainability/pixel_classifier.html

https://scads.github.io/ai4medicine-2025/day2.4_explainability/pixel_classifier.html
https://scads.github.io/ai4medicine-2025/day2.4_explainability/pixel_classifier.html
https://scads.github.io/ai4medicine-2025/day2.4_explainability/pixel_classifier.html
https://scads.github.io/ai4medicine-2025/day2.4_explainability/pixel_classifier.html
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