

Explainable Machine Learning Robert Haase

SACHSEN

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Short Detour: Random Forest Classifiers

Robert Haase

SACHSEN

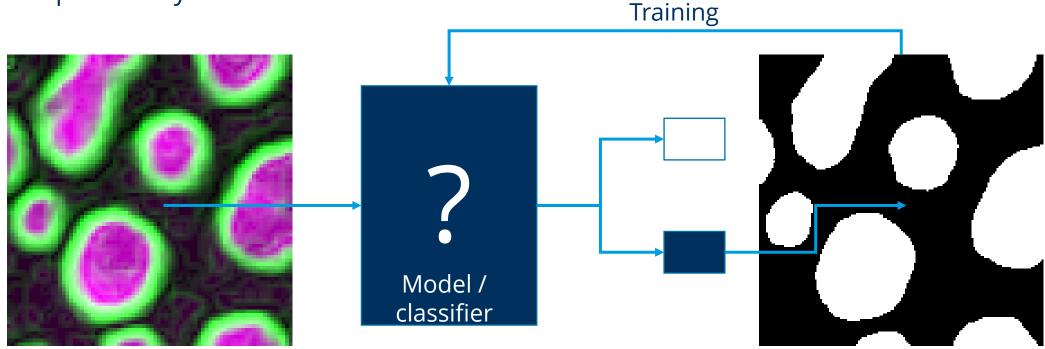
Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Machine learning for image segmentation

Supervised machine learning: We give the computer some ground truth to learn from

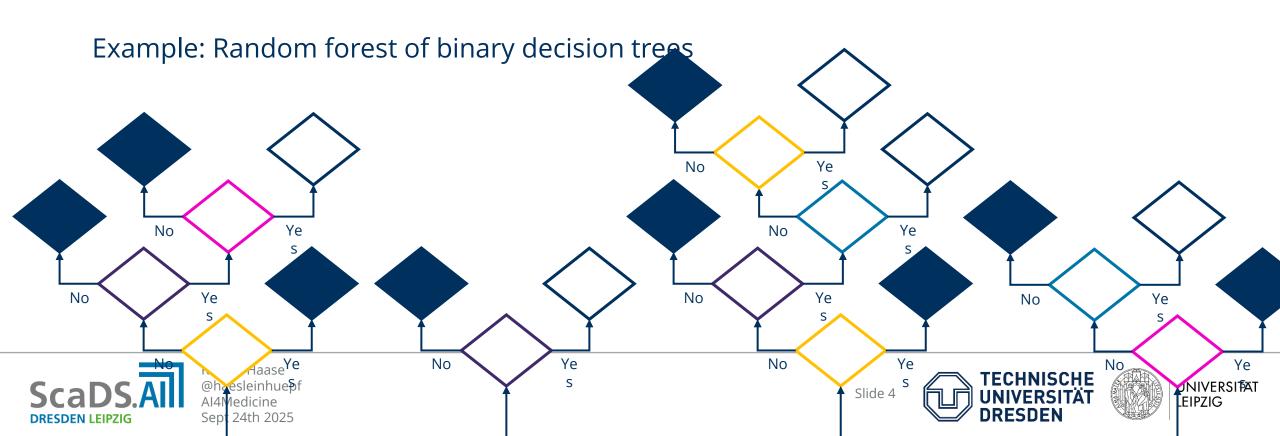
The computer derives a *model* or a *classifier* which can judge if a pixel should be foreground (white) or background (black)

Example: Binary classifier



Random forest based image segmentation

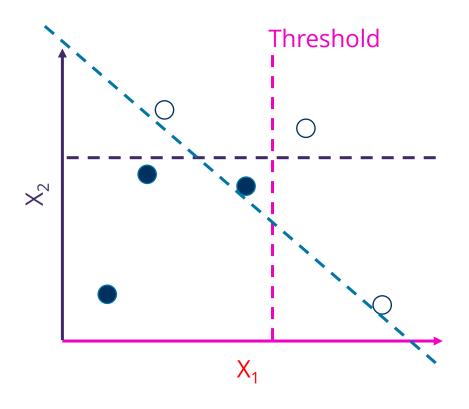
Decision trees are classifiers, they decide if a pixel should be white or black Random decision trees are randomly initialized, afterwards evaluated and selected Random forests consist of many random decision trees

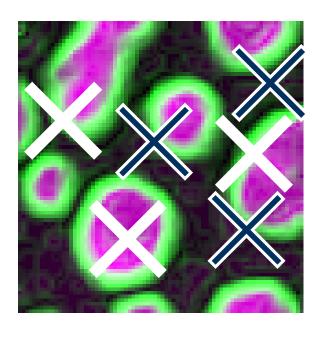


Deriving random decision trees

For efficient processing, we randomly *sample* our data set

Individual pixels, their intensity and their classification

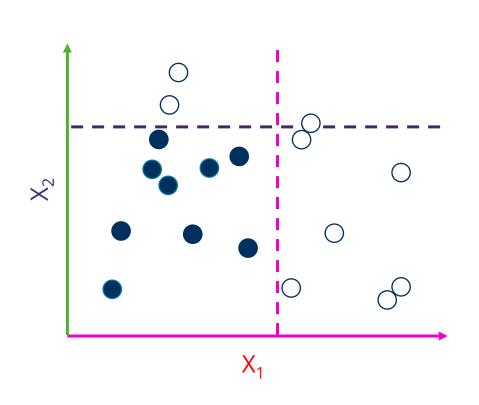


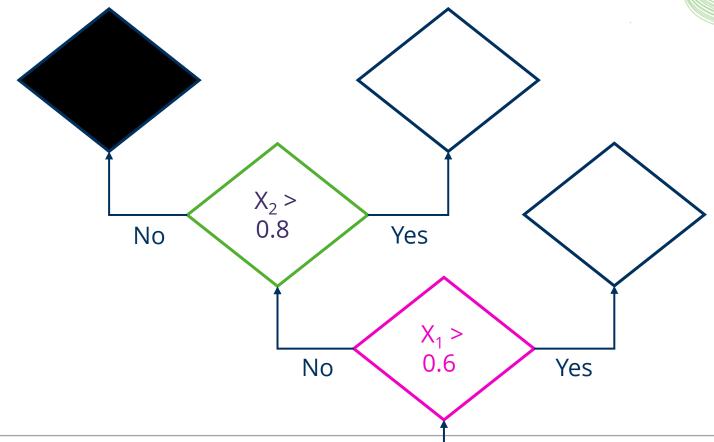


Note: You cannot use a single threshold to make the decision

Deriving random decision trees

Decision trees combine several thresholds on several parameters

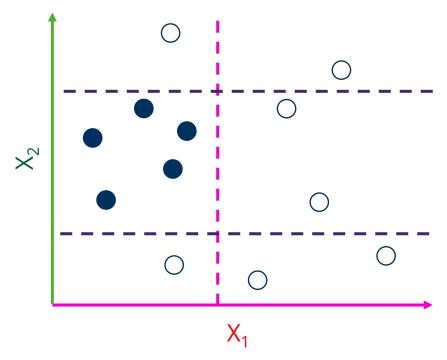


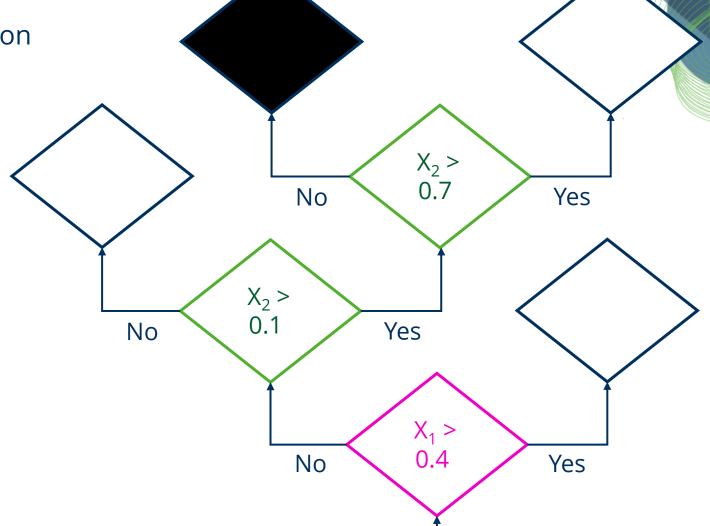


Robert Haase

Deriving random decision trees

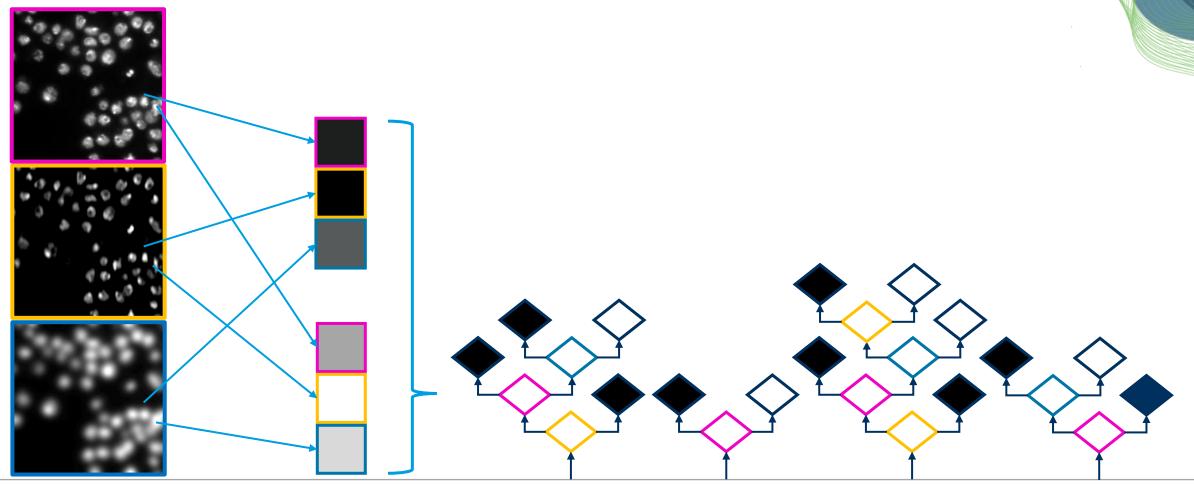
Depending on sampling, the decision trees are different





Random Forest Pixel Classifiers

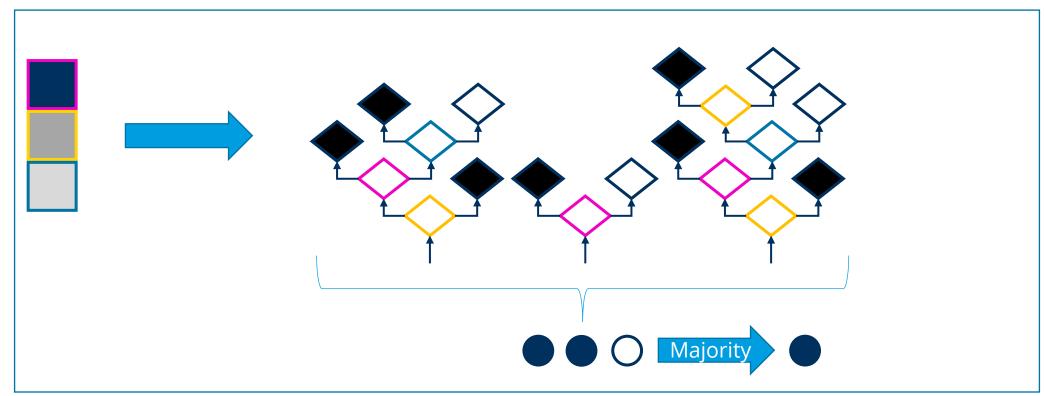
By training many decision trees, errors are equilibrated



Random Forest Pixel Classifiers

Combination of individual tree decisions by voting or max / mean

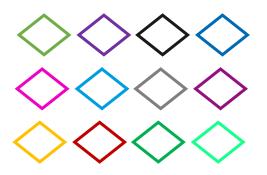
Prediction



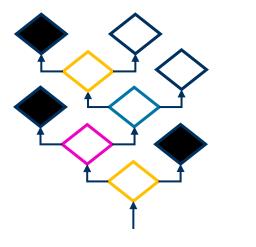
Random Forest Pixel Classifiers

Typical numbers for pixel classifiers in microscopy image analysis

Available features:



- Gaussian blur image
- DoG image
- LoG image
- Hessian
- •



Depth <= 4

Number of trees > 100

Explainable Artificial Intelligence (XAI)

"Es gibt derzeit noch keine allgemein akzeptierte Definition von XAI."

Wikipedia [1]

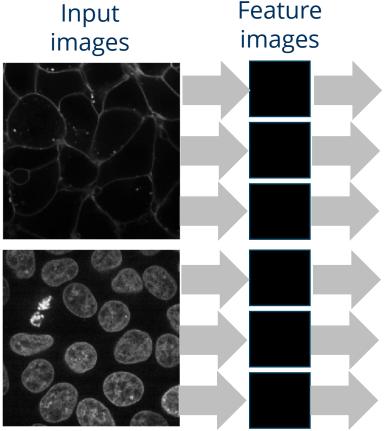
Relevant Aspects:

- Explainability vs. Interpretability of AI-algorithms
- We seek to enable humans to
 - predict results of AI Systems,
 - trust Al-Systems and
 - using Al-Systems effectively.

Explanation of Random Forest Classifiers

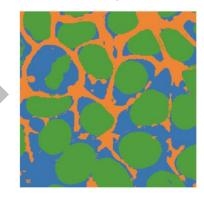
... by reading code

... is quite useless



```
Decision trees
(OpenCL)
if(i3<6093.5){
if(i1<3335.03)if(i3<6615.0){
```

```
if(i1<3335.03 if(i3<6615.0){
s0+=0.994917 if(i1<3277.4873 if(i0<2118.0){
s1+=0.001270
              s0+=0.98595146
                             if(i4<8134.84912109375){
 s2+=0.003811
              s1+=0.00127713
                               s0+=1.0;
} else {
               s2+=0.01277139
                             } else {
 s1+=1.0;
              } else {
                               s0+=0.0012077294685990338;
                               s2+=0.998792270531401;
               s1+=1.0;
else {
if(i4<8042.86)
                             } else {
              else {
s0+=0.818181
                              if(i1<3335.035888671875){
              if(i1<3244.2104
s1+=0.181818
                               s0+=0.8279569892473119;
               s0+=0.00118835
} else {
                               s1+=0.005376344086021506;
               s2+=0.99881164
 s0+=0.000885
                               else {
 s1+=0.001180
                              } else {
               s1+=1.0;
 s2+=0.997933
                               s1+=1.0;
```

Explainability

A logically consistent line of argumentation that depicts a situation or an algorithm with complete transparency.

Intrinsically explainable AI-algorithms

Example: Linear Regression

$$f(x_1, x_2) = w_1 x_1 + w_2 x_2$$

If w_1 is much bigger than w_2 , the result depends much more on x_1 compared to x_2 .

Model explainable

Results predictable

Explainability

A logically consistent line of argumentation that depicts a situation or an algorithm with complete transparency.

Intrinsically explainable AI-algorithms

Example: Linear Regression

Robert Haase

AI4Medicine

Sept 24th 2025

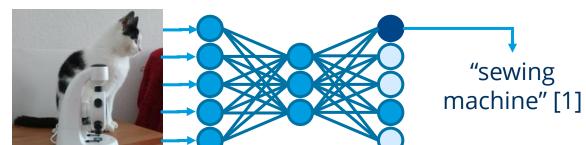
@haesleinhuepf

$$f(x_1, x_2) = w_1 x_1 + w_2 x_2$$

If w_1 is much bigger than w_2 , the result depends much more on x_1 compared to x_2 .

Black-Box Al-algorithms

 Example: Deep Neural Networks (DNN)



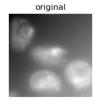
Not easily explainable and predictable

Interpretability

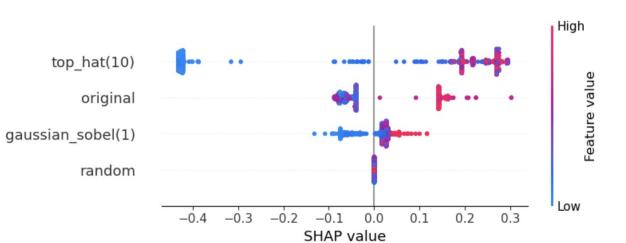
Visualization of intermediate results and their influence on results

Model-agnostic methods

Example: Shapley's Additive exPlanations (SHAP)





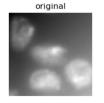


Interpretability

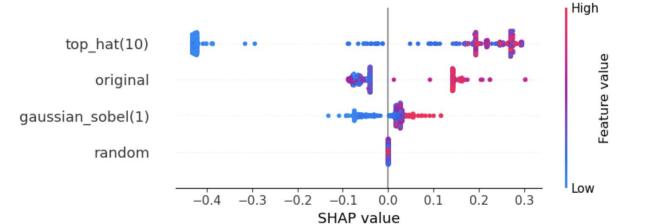
Visualization of intermediate results and their influence on results.

Model-agnostic methods

Example: Shapley's Additive exPlanations (SHAP)

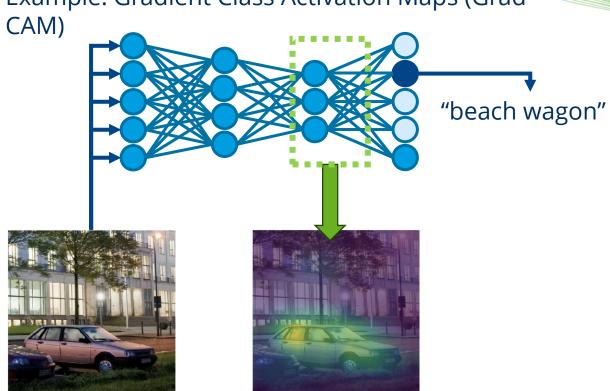






Model-specific methods

Example: Gradient Class Activation Maps (Grad-



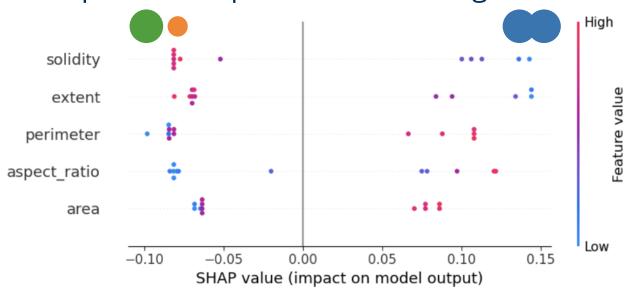
Robert Haase @haesleinhuepf AI4Medicine Sept 24th 2025

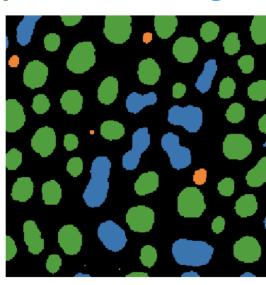
https://haesleinhuepf.github.io/xai/30 shap/pixel classifier.html https://haesleinhuepf.github.io/xai/60 grad-cam/classification resnet.html Image source: Cropped from HTW Dresden (Fotograf: Peter Sebb) licensed Co https://commons.wikimedia.org/w/index.php?curid=15652763

Explainable Al

Depending on the target group [for the explanation], the influence of data is more important than how AI algorithms work.

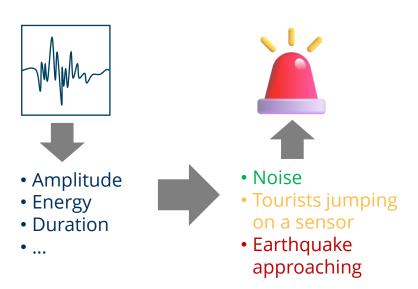
- Many computer scientists want to explain and understand AI methods.
- Biologists use AI as a method to explain biological processes.
- Example: "What parameters distinguish round objects from elongated ones?"

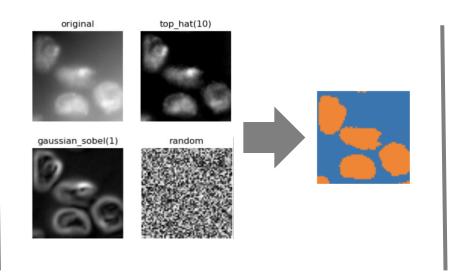


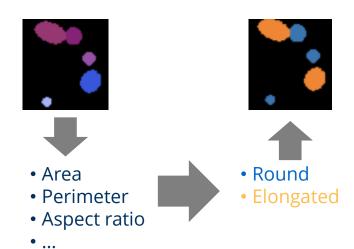


Recap: Feature selection

- Which measurement / parameter / feature is related to the effect I'm investigating?
- Example goals:







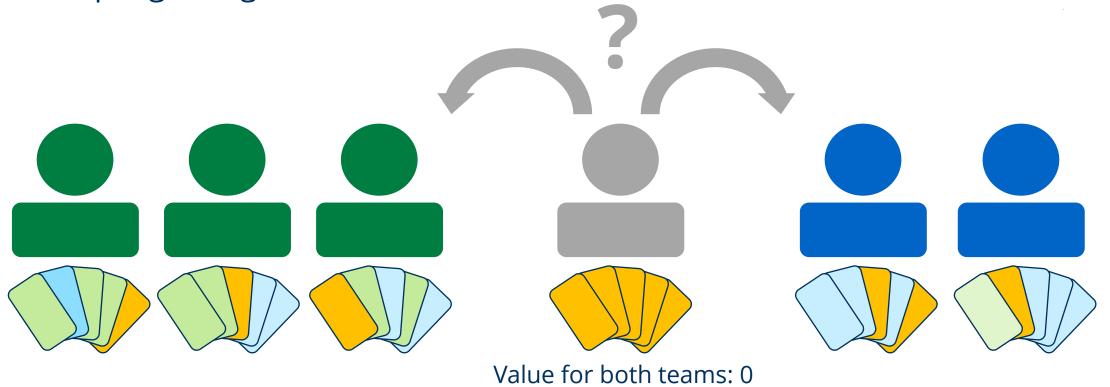
Signal classification

Pixel classification

Object classification

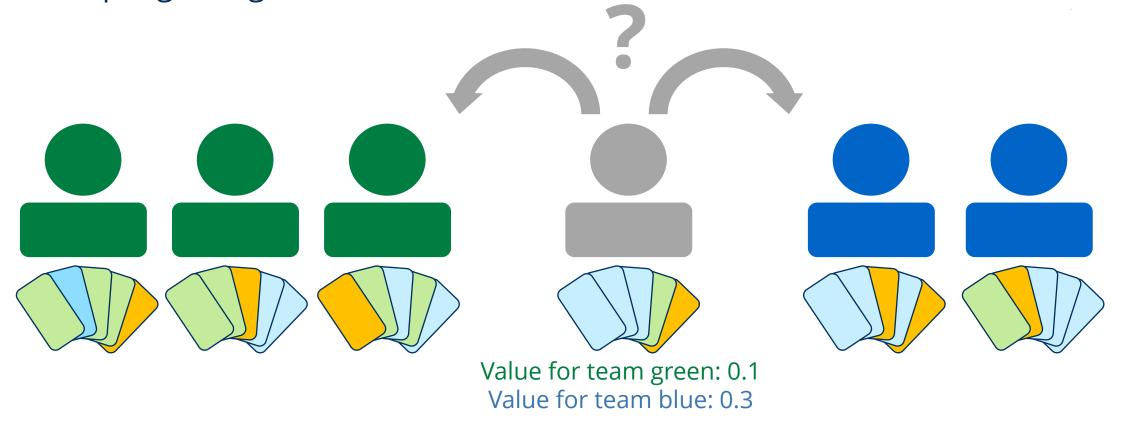
Collaborative game theory

If players collaborate, how is the impact on a team if another player joins? Example game goal: maximize cards of the same colour.



Collaborative game theory

If players collaborate, how is the impact on a team if another player joins? Example game goal: maximize cards of the same colour.



SHapley's Additive exPlanations

Analogously, this can be done with data points instead of features.

$$\phi_i = \sum_{S \subseteq F \setminus \{i\}} rac{|S|!(|F|-|S|-1)!}{|F|!} [f_x(S \cup \{i\}) - f_x(S)]$$

SHAP value of feature i

Sum over all Subsets of Features not including i Weight related to number of used features in relation all players

Quality of classifier using feature i

Quality of classifier *not* using feature i

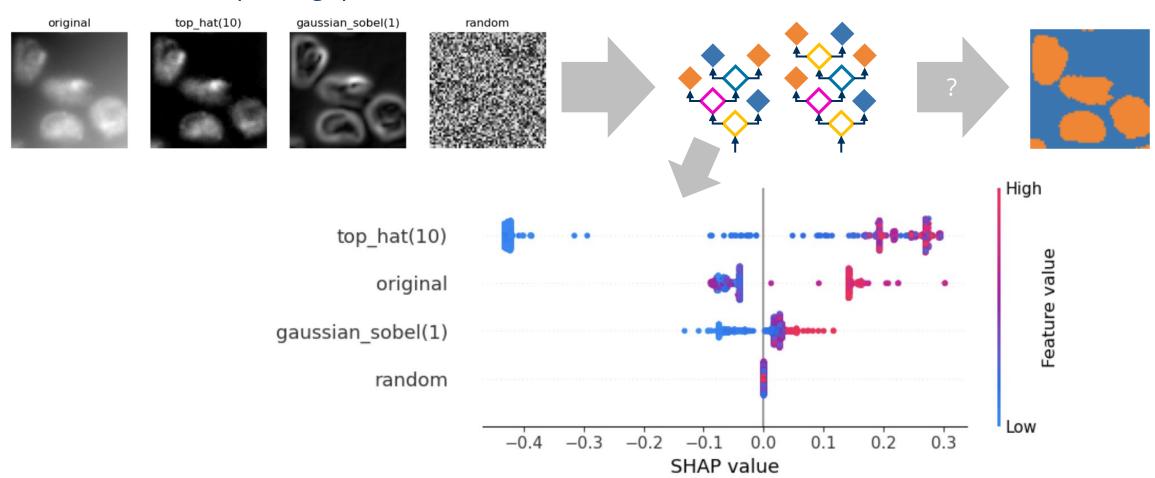
Game theory

SHAP value of player i

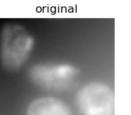
Sum over all Subsets of Players not including i Weight related to number of players in a coalition in relation to undecided players and all players Chance to win game of coalition without player i

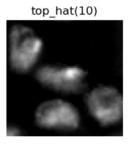
Chance to win game of coalition *including* player i

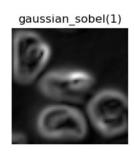
Allows interpreting [pixel] classification results

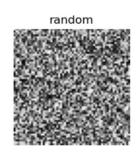


Allows interpreting [pixel] classificatio

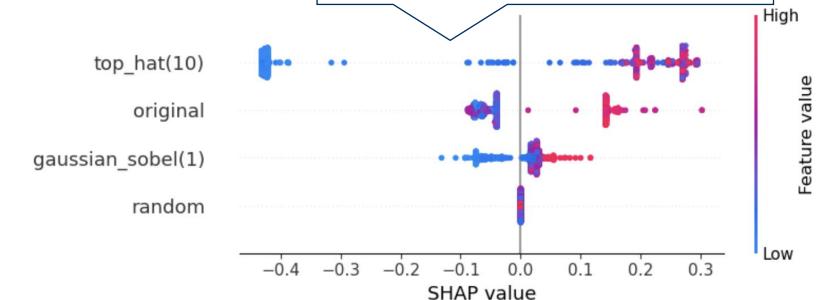




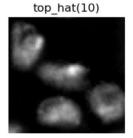




"If intensity in the top-hat image is high, the classifier tends to select the positive class (orange)."



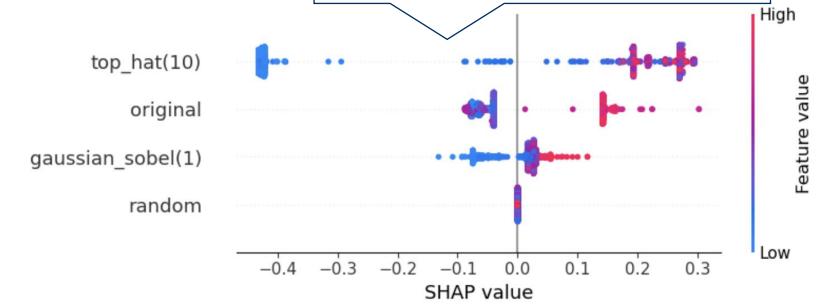
Allows interpreting [pixel] classificatio



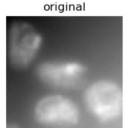


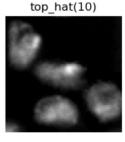
"If intensity in the top-hat image is low, the classifier needs to take other features into account."

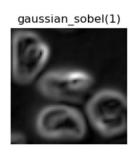


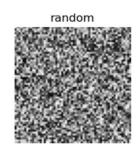


Allows interpreting [pixel] classificatio









"The random feature has no value for classification."

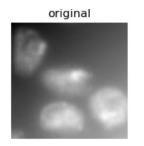
top_hat(10)
original
gaussian_sobel(1)
random

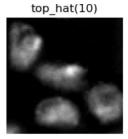
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

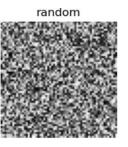
SHAP value

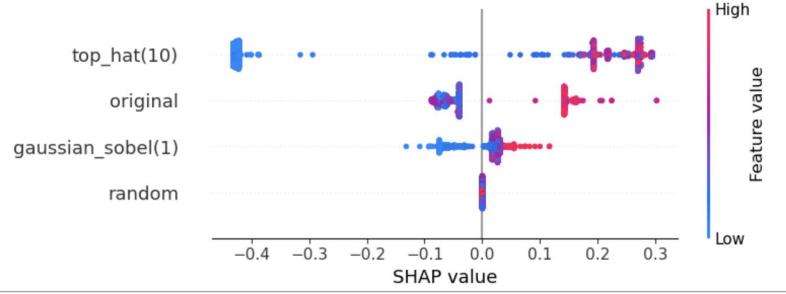
Pitfall: Correlation

Correlated features may harm interpretability



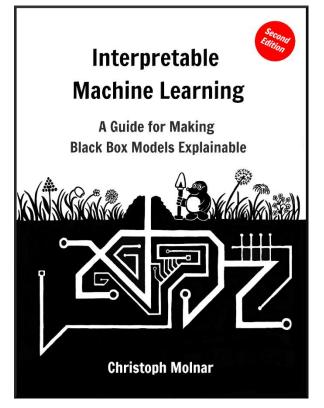




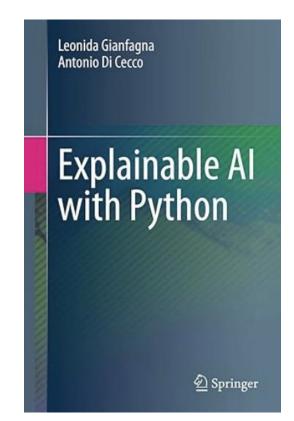


Feature Correlation Matrix original - 0.75 **Pitfall: Correlation** top hat(6) -- 0.50 - 0.25 top_hat(8) -- 0.00 Correlated features may harm interpretability top hat(10) -- -0.25 original top_hat(6) top_hat(8) top_hat(10) top_hat(12) gaussian_sobel(1) top hat(12) -- -0.50 -0.75gaussian sobel(1) op_hat(10) High top hat(10) top_hat(10) top hat(12) original top_hat(8) top_hat(6) gaussian sobel(1) original random oussian_sobel(1) Features may Low 0.2 0.2 -0.10.0 0.1 0.0 0.1 -0.3-0.2SHAP value SHAP value appear less Robert Haase valuable. @haesleinhuepf UNIVERSITÄT AI4Medicine **LEIPZIG** Sept 24th 2025 **DRESDEN LEIPZIG**

Read more...



https://christophm.github.io/ interpretable-ml-book/

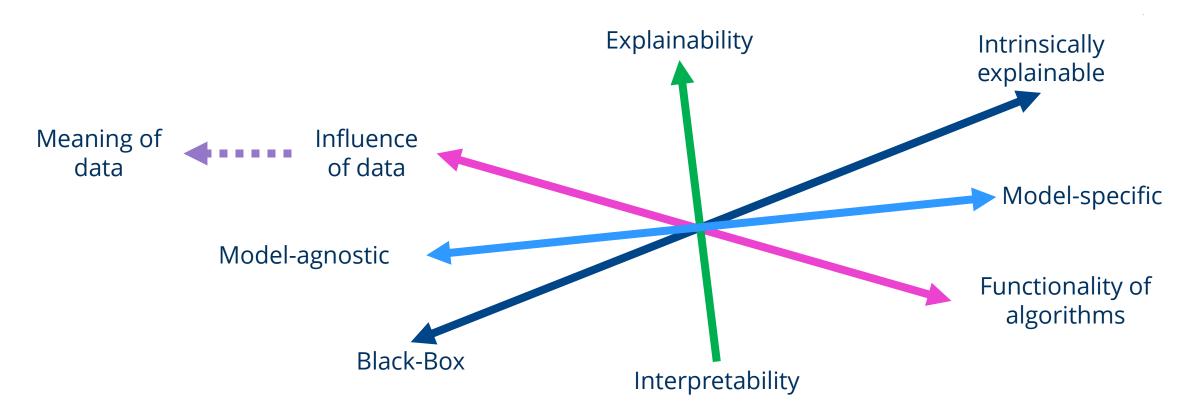


https://www.amazon.de/dp/ 3030686396

https://www.youtube.com/watch?
v=dw63QH_b3Jo

Summary: Explainable Al

Methods of XAI can be classified on different scales



CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Exercises Robert Haase

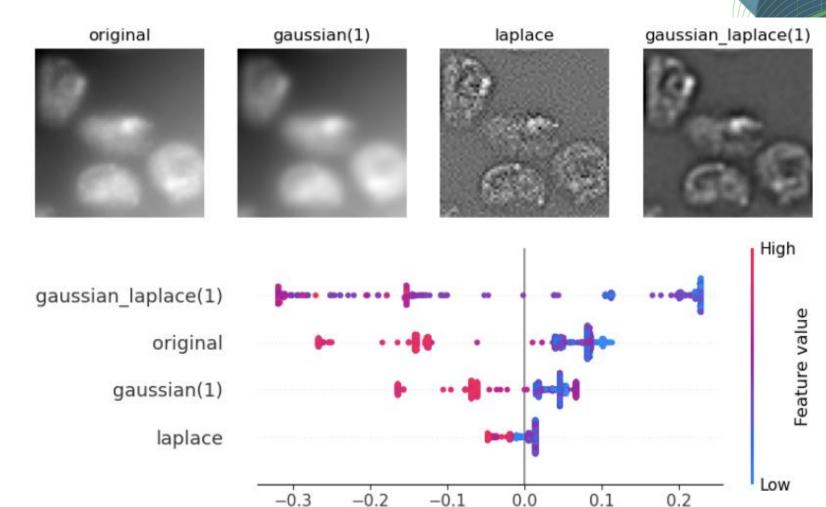
SACHSEN

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

: 41

SHAP Analysis in Python

Use the opportunity and explain SHAP plots like this one!



SHAP value

