# Data Science and Al for Medicine Training School

**TRAINING: Introduction to Large Language Models** 

**SPEAKER: Sanddhya Jayabalan** 





SACHSEN Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.





# The Rise of Large Language Models





Source: https://research.aimultiple.com/future-of-large-language-models/





# Where do Large Language Models fit into the Al Space







# The progression towards Large Language Models

Syntactic Structures for machine text translation

Grammar-based rules

Hidden Markov Models for Speech Recognition

Long Short-Term Memory
Models (LSTM)

Recurrent Neural Networks (RNNs) Pre-trained word embedding models (Word2Vec)

Encoder-Decoder
Architecture

Sequence-to-Sequence Learning Emergence of Pre-trained transformer models

1950 – Mid 1980s

Rule-Based

Late 1980s - 2000

Statistical Approaches

2000s - 2018

Deep Learning

2019 - Present

GenAl

Natural Language Processing (NLP)

https://blog.dataiku.com/nlp-metamorphosis





# How Natural Language is Modelled within LLMs



**Transformer** Architecture with **Attention** Mechanism

The sky is bug. X

Textual Patterns



Semantic Patterns





# Zero-Shot LLMs are highly performative



https://hai.stanford.edu/ai-index/2025-ai-index-report





# LLMs are well suited for Medical Tasks

Properties of Medical Applications **Unstructured Data** 

Multimodal Data

**Personalized Solutions** 

Large amounts of Knowledge

**Complex Reasoning** 





# LLMs show potential for diverse clinical applications







### Limitations of LLMS and their effect in Clinical Settings

HALLUCINATIONS OR FACTUAL INACCURACIES



Need for
Validated Outputs
for High-Risk
Applications

DATA PRIVACY



Patient
Privacy and
Regulatory
Concerns

TRAINING CUTOFFS LIMITING KNOWLEDGE AVAILABILITY



Concordance with updated medical policies and knowledge MODEL BIAS



Ethical Concerns for Patient Fairness





# The field of LLMs is continuously evolving







# **Prompt Engineering**

Model Input

#### **MODEL PROMPT:**

Define style, audience, role Define output structure Provide example input/output

"You are a doctor with expertise in hematology."

LLM +

> **Prompt** Engineered LLM

**Model Output** 



#### Zero-Shot LLMs:

Model hallucinations Inconsistent outputs



#### Prompt Engineering

*Improved* instruction following

Improved output consistency

Domain adaptation





### Retrieval Augmented Generation (RAG)





#### **Zero-Shot LLMs:**

Factual Inaccuracies
Knowledge Cutoffs



#### **RAG**

Leverages LLM for reasoning

External Grounding

Multimodal data integration

Curation of trusted data sources





# Retrieval-Augmented Generation (RAG) Clinical Example





Ferber, D., Wiest, I. C., Wölflein, G., Ebert, M. P., Beutel, G., Eckardt, J. N., ... & Kather, J. N. (2024). GPT-4 for Information Retrieval and Comparison of Medical Oncology Guidelines. NEJM Al. Alcs2300235.





## **Agentic Al**





#### Agentic Al

Leverages LLM reasoning capability for autonomous decision-making

Integrates multiple data modalities

Utilizes validated advanced computational methodologies

Implements guardrails for safer responses





# **Example of LLM Agents for Clinical Decision Support**



Ferber, D., El Nahhas, O.S.M., Wölflein, G. et al. Development and validation of an autonomous artificial intelligence agent for clinical decision-making in oncology. Nat Cancer 6, 1337–1349 (2025). https://doi-org.ezproxy.medma.uni-heidelberg.de/10.1038/s43018-025-00991-6





# LLMs are not perfect but they provide building blocks for robust medical applications



Guardrails for response safety



Regulatory-Compliant Systems



Trustworthy and Fair Systems



Clinically-relevant applications



Evaluation and Validation of Systems





# Hands on exercise

- Please save a copy of the Google Colab:
  - https://tinyurl.com/4dxm83ev
- Setting up the LLM API Client:



• We recommend working in pairs ©



