Data Science and AI for Medicine Training School

TRAINING: Application of Deep Learning in Medical Imaging (Radiology)

SPEAKERS: Leo Misera, Asier Rabasco

SACHSEN Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Radiology in Medicine

Imaging modalities

Applications of Radiology in Al

Hands-On Session

Radiology in Medicine: how every is everywhere?

Radiology in Medicine: history and definition

Radiology: leverage of human body imaging for treatment guidance and diagnosis

1895-1896 Discovery of X-rays and radioactivity¹

1914-1918 Film used for radiology Usage in WWI 1946-1958
Discovery of NMR
Usage of ultrasound in gynecology

1970s-1980s First CT and MRI images 1990s+ Refinement of radiological technologies²

Radiology in Medicine: subtypes

Diagnostic Radiology

Direct radiologist involvement

Guidance of concurrent procedures

Sedation

Indirect radiologist

involvement

Radiology in Medicine

Imaging modalities

Applications of Radiology in Al

Hands-On Session

Imaging modalities: brief summary of radiation

Radiation: emission/transmission of energy through space via waves or particles

urces-and-doses

Imaging modalities: projectional radiography

X-rays are ionising sources of radiation.

Small doses used to produce 2D images of body structures

Contrast can be limited due to overlapping of structures in one single view

Radiography is used to diagnose broken bones, foreign objects in soft tissue or screen for infections

Oldest and most used form of medical imaging

Imaging modalities: computerised tomography

More radiation than X-rays, but allows for 3D scanning of the body/area of interest

Contrast is used intravenously to highlight different parts of the anatomy in real time

Allows for locating lesions within the body, assess sizes and make first impressions on a diagnosis

CT units have physical meaning, related to the attenuation of water.

Imaging modalities: magnetic resonance imaging

MRI does not produce ionizing radiation, it is based on nuclear magnetic resonance from hydrogen nuclei (protons)

MRI is very very diverse. Sequences use different resonance aspects, highlighting different phenomena

MRIs are better at contrast resolution than CTs but lower at spatial resolution

MRI units are dimensionless and can vary from person to person for the same exam.

Imaging modalities: magnetic resonance imaging

T1-weighted

T2-weighted

FLAIR

Diffusion-weighted

Apparent diffusion weighted

Radiology in Medicine

Imaging modalities

Applications of Radiology in Al

Hands-On Session

Applications of Radiology in Al

"Radiologists will be obsolete in 5 years"

George Hinton, 2016, Godfather of Al and Nobel prize in Physics.

Not a radiologist

Applications of Radiology in AI: the need for AI

Prevalence of burnout amongst German radiologists: A call to action

Burnout is prevalent among medical professionals, including radiologists

Distributed burnout focused questionnaires to members of the German Society of Radiology and Interventional

Radiology

A burnoutrate of 76.7% was observed in 172 participants

84 Data not available

Applications of Radiology in AI: synergistic fields

1.22 (1.09, 1.41) 1.14 (1.09, 1.19) 1.31 (1.17, 1.48) 1.12 (0.98, 1.29) 0.97 (0.85, 1.10) 1.15 (1.03, 1.30) 1.09 (0.85, 1.43) 0.92 (0.75, 1.12) 1.24 (1.04, 1.49) 1.03 (0.96, 1.13) 1.09 (0.98, 1.22) 0.90 (0.75, 1.07) 1.06 (0.99, 1.15) 1.05 (0.88, 1.26) 1.21 (1.03, 1.48) 1.00 (0.79, 1.26) 1.11 (0.99, 1.25) 1.20 (1.15, 1.26) 1.06 (1.01, 1.13) 0.94 (0.85, 1.04) 1.45 (1.32, 1.64) 1.12 (1.08, 1.16)

Applications of Radiology in AI: the MASAI trial

Applications of Radiology in AI: from data to insights

Applications of Radiology in AI: how is data used?

Radiology dataset (2D, 3D...)

Data Loading

- Package to load images
- Functions to feed data to the model
- Augmentations on images

Model training

- Select parameters for training
- Choose architecture
- Make loops for training and tracking

Test & evaluate

- Use different data to deploy model
- Test model through different metrics
- Explainability

Applications of Radiology in AI: architectures

(Vision) Transformers

Input Image 28 x 28

Features based on learned relationships between tokens, **very weak inductive bias**

Applications of Radiology in AI: explainability

Dugaecescu et al.. *Neural Computing and Applications* (2025). 3:14935-14970 Slide 22

Applications of Radiology in AI: segmentation

Data Science and AI for Medicine Training School

Training: Application of Deep Learning in Al

(Radiology)

Segmentation Loss (Dice)

$$L_{dice} = 1 - \frac{2\sum_{n=1}^{N} t_n y_n}{\sum_{n=1}^{N} (t_n + y_n)}$$

Applications of Radiology in AI: prognosis

Article Open access Published: 01 May 2025

Vision transformer-based model can optimize curativeintent treatment for patients with recurrent hepatocellular carcinoma

Conclusions

- Radiology is a long-lived field with an early adoption of electronic technology
- Radiological images are varied and diverse, making Radiology a complex field.
- The complexity, number and link of radiological images with diseases makes them a rich source f
 informative data for modeling
- Radiology can benefit from AI, reducing workloads and enhancing radiologist readings
- Ai in Radiology is an ongoing field of research. There is evolution in architectures, training styles and applications

Now on to the hands-on session!

